Ecological release

Last updated

Ecological release refers to a population increase or population explosion that occurs when a species is freed from limiting factors in its environment. Sometimes this may occur when a plant or animal species is introduced, for example, to an island or to a new territory or environment other than its native habitat. When this happens, the new arrivals may find themselves suddenly free from the competitors, diseases, or predatory species, etc. in their previous environment, allowing their population numbers to increase beyond their previous limitations. Another common example of ecological release can occur if a disease or a competitor or a keystone species, such as a top predator, is removed from a community or ecosystem. Classical examples of this latter dynamics include population explosions of sea urchins in California's offshore kelp beds, for example, when human hunters began to kill too many sea otters, and/or sudden population explosions of jackrabbits if hunters or ranchers kill too many coyotes.

Contents

The foreign species either flourishes into a local population or dies out. Not all released species will become invasive; most released species that don't immediately die out tend to find a small niche in the local ecosystem. Ecological release also occurs when a species expands its niche within its own habitat or into a new habitat. [1]

Origin

The term ecological release first appeared in the scientific literature in 1972 in the American Zoologist journal discussing the effects of the introduction of a sea snail on an isolated ecosystem, Easter Island. [2] One of the first studies that linked niche shifts to the presence and absence of competitors was by Lack and Southern [3] where habitat broadness of song birds was positively correlated to the absence of a related species.

Common example

Invasive species are an excellent example of successful ecological release because low levels of biodiversity, an abundance of resources, and particular life history traits allow their numbers to increase dramatically. Additionally, there are few predators for these species.

Causes and mechanisms

Cascade effect

When a keystone species, such as a top predator, is removed from a community or ecosystem, an ecological cascade effect can occur through which a series of secondary extinctions take place. Keystone predators are responsible for the control of prey densities, and their removal can result in an increase in one or a number of predators, consumers, or competitors elsewhere in the food web. [4] Several prey or competitor species can consequently suffer a population decline and potentially be extirpated; the result of this would be a decrease in community diversity. [4] Without the keystone species, prey populations can grow indefinitely and will, ultimately, be limited by resources such as food and shelter. Due to these secondary extinctions, a niche is left unfilled: this allows a new species to invade and exploit the resources that are no longer being used by other species. [4]

Human causes ecological release

Ecological release by human means, intentional or unintentional, has had drastic effects on ecosystems worldwide. The most extreme examples of invasive species include: cane toads in Australia, [5] kudzu in the Southeast United States, [6] or beavers in Tierra Del Fuego. But ecological release can also be more subtle, less drastic and easily overlooked such as mustangs and dandelions in North America, [7] musk oxen in Svalbard, [8] dromedaries in Australia, or peaches in Georgia [9]

See also

Related Research Articles

<span class="mw-page-title-main">Ecological niche</span> Fit of a species living under specific environmental conditions

In ecology, a niche is the match of a species to a specific environmental condition. It describes how an organism or population responds to the distribution of resources and competitors and how it in turn alters those same factors. "The type and number of variables comprising the dimensions of an environmental niche vary from one species to another [and] the relative importance of particular environmental variables for a species may vary according to the geographic and biotic contexts".

<span class="mw-page-title-main">Edge effects</span> Ecological concept

In ecology, edge effects are changes in population or community structures that occur at the boundary of two or more habitats. Areas with small habitat fragments exhibit especially pronounced edge effects that may extend throughout the range. As the edge effects increase, the boundary habitat allows for greater biodiversity.

<span class="mw-page-title-main">Keystone species</span> Species with a large effect on its environment

A keystone species is a species that has a disproportionately large effect on its natural environment relative to its abundance, a concept introduced in 1969 by the zoologist Robert T. Paine. Keystone species play a critical role in maintaining the structure of an ecological community, affecting many other organisms in an ecosystem and helping to determine the types and numbers of various other species in the community. Without keystone species, the ecosystem would be dramatically different or cease to exist altogether. Some keystone species, such as the wolf, are also apex predators.

This glossary of ecology is a list of definitions of terms and concepts in ecology and related fields. For more specific definitions from other glossaries related to ecology, see Glossary of biology, Glossary of evolutionary biology, and Glossary of environmental science.

<span class="mw-page-title-main">Ecosystem engineer</span> Ecological niche

An ecosystem engineer is any species that creates, significantly modifies, maintains or destroys a habitat. These organisms can have a large impact on species richness and landscape-level heterogeneity of an area. As a result, ecosystem engineers are important for maintaining the health and stability of the environment they are living in. Since all organisms impact the environment they live in one way or another, it has been proposed that the term "ecosystem engineers" be used only for keystone species whose behavior very strongly affects other organisms.

<span class="mw-page-title-main">Habitat fragmentation</span> Discontinuities in an organisms environment causing population fragmentation.

Habitat fragmentation describes the emergence of discontinuities (fragmentation) in an organism's preferred environment (habitat), causing population fragmentation and ecosystem decay. Causes of habitat fragmentation include geological processes that slowly alter the layout of the physical environment, and human activity such as land conversion, which can alter the environment much faster and causes the extinction of many species. More specifically, habitat fragmentation is a process by which large and contiguous habitats get divided into smaller, isolated patches of habitats.

<span class="mw-page-title-main">Ecosynthesis</span>

Ecosynthesis is the use of introduced species to fill niches in a disrupted environment, with the aim of increasing the speed of ecological restoration. This decreases the amount of physical damage done in a disrupted landscape. An example is using willow in a stream corridor for sediment and phosphorus capture. It aims to aid ecological restoration, the practice of renewing and restoring degraded, damaged, or destroyed ecosystems and habitats in the environment by active human intervention and action. Humans use ecosynthesis to make environments more suitable for life, through restoration ecology

<span class="mw-page-title-main">Apex predator</span> Predator at the top of a food chain

An apex predator, also known as a top predator, is a predator at the top of a food chain, without natural predators of its own.

A functional group is merely a set of species, or collection of organisms, that share alike characteristics within a community. Ideally, the lifeforms would perform equivalent tasks based on domain forces, rather than a common ancestor or evolutionary relationship. This could potentially lead to analogous structures that overrule the possibility of homology. More specifically, these beings produce resembling effects to external factors of an inhabiting system. Due to the fact that a majority of these creatures share an ecological niche, it is practical to assume they require similar structures in order to achieve the greatest amount of fitness. This refers to such as the ability to successfully reproduce to create offspring, and furthermore sustain life by avoiding alike predators and sharing meals.

<span class="mw-page-title-main">Competition (biology)</span> Interaction where the fitness of one organism is lowered by the presence of another organism

Competition is an interaction between organisms or species in which both require a resource that is in limited supply. Competition lowers the fitness of both organisms involved since the presence of one of the organisms always reduces the amount of the resource available to the other.

<span class="mw-page-title-main">Interspecific competition</span> Form of competition

Interspecific competition, in ecology, is a form of competition in which individuals of different species compete for the same resources in an ecosystem. This can be contrasted with mutualism, a type of symbiosis. Competition between members of the same species is called intraspecific competition.

Trophic cascades are powerful indirect interactions that can control entire ecosystems, occurring when a trophic level in a food web is suppressed. For example, a top-down cascade will occur if predators are effective enough in predation to reduce the abundance, or alter the behavior of their prey, thereby releasing the next lower trophic level from predation.

<span class="mw-page-title-main">Community (ecology)</span> Associated populations of species in a given area

In ecology, a community is a group or association of populations of two or more different species occupying the same geographical area at the same time, also known as a biocoenosis, biotic community, biological community, ecological community, or life assemblage. The term community has a variety of uses. In its simplest form it refers to groups of organisms in a specific place or time, for example, "the fish community of Lake Ontario before industrialization".

An ecological cascade effect is a series of secondary extinctions that are triggered by the primary extinction of a key species in an ecosystem. Secondary extinctions are likely to occur when the threatened species are: dependent on a few specific food sources, mutualistic, or forced to coexist with an invasive species that is introduced to the ecosystem. Species introductions to a foreign ecosystem can often devastate entire communities, and even entire ecosystems. These exotic species monopolize the ecosystem's resources, and since they have no natural predators to decrease their growth, they are able to increase indefinitely. Olsen et al. showed that exotic species have caused lake and estuary ecosystems to go through cascade effects due to loss of algae, crayfish, mollusks, fish, amphibians, and birds. However, the principal cause of cascade effects is the loss of top predators as the key species. As a result of this loss, a dramatic increase of prey species occurs. The prey is then able to overexploit its own food resources, until the population numbers decrease in abundance, which can lead to extinction. When the prey's food resources disappear, they starve and may go extinct as well. If the prey species is herbivorous, then their initial release and exploitation of the plants may result in a loss of plant biodiversity in the area. If other organisms in the ecosystem also depend upon these plants as food resources, then these species may go extinct as well. An example of the cascade effect caused by the loss of a top predator is apparent in tropical forests. When hunters cause local extinctions of top predators, the predators' prey's population numbers increase, causing an overexploitation of a food resource and a cascade effect of species loss. Recent studies have been performed on approaches to mitigate extinction cascades in food-web networks.

<span class="mw-page-title-main">Mesopredator release hypothesis</span> Ecological theory

The mesopredator release hypothesis is an ecological theory used to describe the interrelated population dynamics between apex predators and mesopredators within an ecosystem, such that a collapsing population of the former results in dramatically increased populations of the latter. This hypothesis describes the phenomenon of trophic cascade in specific terrestrial communities.

Ecological extinction is "the reduction of a species to such low abundance that, although it is still present in the community, it no longer interacts significantly with other species".

Island ecology is the study of island organisms and their interactions with each other and the environment. Islands account for nearly 1/6 of earth’s total land area, yet the ecology of island ecosystems is vastly different from that of mainland communities. Their isolation and high availability of empty niches lead to increased speciation. As a result, island ecosystems comprise 30% of the world’s biodiversity hotspots, 50% of marine tropical diversity, and some of the most unusual and rare species. Many species still remain unknown.

<span class="mw-page-title-main">Intraguild predation</span> Killing and sometimes eating of potential competitors

Intraguild predation, or IGP, is the killing and sometimes eating of a potential competitor of a different species. This interaction represents a combination of predation and competition, because both species rely on the same prey resources and also benefit from preying upon one another. Intraguild predation is common in nature and can be asymmetrical, in which one species feeds upon the other, or symmetrical, in which both species prey upon each other. Because the dominant intraguild predator gains the dual benefits of feeding and eliminating a potential competitor, IGP interactions can have considerable effects on the structure of ecological communities.

<span class="mw-page-title-main">Mesopredator</span> Predator that is preyed upon

A Mesopredator is a predator that occupies a mid-ranking trophic level in a food web. There is no standard definition of a mesopredator, but mesopredators are usually medium-sized carnivorous or omnivorous animals, such as raccoons, foxes, or coyotes. They are often defined by contrast from apex predators or prey in a particular food web. Mesopredators typically prey on smaller animals.

In biology, overabundant species refers to an excessive number of individuals and occurs when the normal population density has been exceeded. Increase in animal populations is influenced by a variety of factors, some of which include habitat destruction or augmentation by human activity, the introduction of invasive species and the reintroduction of threatened species to protected reserves.

References

  1. Cox, G.W. and R.E. Ricklefs (1977). Species diversity and ecological release in Caribbean land bird faunas. Oikos 28: 113-122.
  2. Kohn, A.J. (1972). Conus-miliaris at Easter Island – ecological release of diet and habitat in an isolated population. American Zoologist 12: 712.
  3. Lack, D., and H. N. Southern (1949). Birds on Tenerife. Ibis 91: 607-26.
  4. 1 2 3 Paine, R.T. (1966). Food web complexity and species diversity. The American Naturalist 100: 65-75.
  5. Dean Goodgame. "Kimberley Toad Busters". Canetoads.com.au. Retrieved 2015-07-25.
  6. "The Amazing Story of Kudzu". Maxshores.com. Retrieved 2015-07-25.
  7. "Black Hills Wild Horse Sanctuary". Wildmustangs.com. Retrieved 2015-07-25.
  8. "Musk Ox" (PDF). Denverzoo.org. Archived from the original (PDF) on 2015-09-23. Retrieved 2015-07-25.
  9. "World's Largest Peach Cobbler - Peach County Commissioners". Worldslargestpeachcobbler.com. 2007-06-20. Retrieved 2015-07-25.