Black Queen hypothesis

Last updated

The Black Queen hypothesis (BQH) is reductive evolution theory which seeks to explain how natural selection (as opposed to genetic drift) can drive gene loss. [1] [2] In a microbial community, different members may have genes which produce certain chemicals or resources in a "leaky fashion" making them accessible to other members of that community. If this resource is available to certain members of a community in a way that allows them to sufficiently access that resource without generating it themselves, these other members in the community may lose the biological function (or the gene) involved in producing that chemical. Put another way, the black queen hypothesis is concerned with the conditions under which it is advantageous to lose certain biological functions. By accessing resources without the need to generate it themselves, these microbes conserve energy and streamline their genomes to enable faster replication.

Contents

Jeffrey Morris proposed the Black Queen hypothesis in his 2011 PhD dissertation. [3] In the following year, Morris wrote another publication on the subject alongside Richard Lenski and Erik Zinser more fully refining and fleshing out the hypothesis. [4] The name of the hypothesis—"Black Queen hypothesis"—is a play on the Red Queen hypothesis, an earlier theory of coevolution which states that organisms must constantly refine and adapt to keep up with the changing environment and the evolution of other organisms. [5]

Principles

Original theory

The "Black Queen" refers to the "Queen of Spades" from the card game Hearts. The goal of Hearts is to end up as the player with the fewest number of points. However, the Queen of Spades is worth the same number of points as all the other cards combined. For this reason, players seek to avoid getting the Queen of Spades. At the same time, one player must end up with the Queen. Similarly, the BQH posits that members of a community will dispense with any functions (or genes) that become dispensable. At the same time, at least one or a few members of the community must retain that function so that the other members can outsource it (since it remains critical for the survival of each member). This process leads to commensalistic or mutualistic interactions between members of a microbial community. [4] Compared to the Red Queen hypothesis, it is fairly recent; thus, it has not been thoroughly tested and the mechanisms driving it have not been fully elucidated. [6]

In Hearts, "Shooting to the Moon" is a risky strategy where one player seeks to get the Queen of Spades in addition to all cards of the Heart suit. If the player is successful in gaining every card that is otherwise individually negative to gain, they will end up accruing no points. Analogously, in BQH, shooting the moon refers to the strategy in which a helper for one function is more likely to become a helper for another unrelated function. [4] These helper organism retain all genes encoding leaky functions. While the large corresponding genome might appear maladaptive, it may allow for survival as the other members of the microbial community now depend on the helper organisms survival, and in the case of a population bottleneck, the helper organism will retain the genes necessary to survive independently. [7]

Later elaborations

A "strong version" of the BQH has been proposed, which suggests that there are no "keystone" members of a microbial community which take on all leaky functions. Rather, all members of the community will come to depend on others to some extent. In this case, no single species in the community is capable of surviving on its own and a migration will require the movement of members from several species to be successful. [7] It may be possible for some microbes to avoid this "public goods" dilemma by forming a biofilm, where cells multiply and aggregate closely such that the whole community is made up of individuals with a closely related genotype and so all possess the same functional genes and capacities. [7]

More recently, a "Gray Queen Hypothesis" has been posited which seeks to explain the same phenomena in a related way, but through the lenses of constructive neutral evolution. [8] Constructive neutral evolution seeks to explain how complex systems can emerge through neutral transitions. This might involve the chance emergence of not-yet-necessary interactions (e.g. one protein gaining the capacity to bind to another it was previously unable to bind to) that enables an otherwise deleterious mutation to arise in the population but without a negative effect on the organism. But now, the organism is dependent on that interaction that emerged by chance. A new interaction has emerged in the system, and individuals who lose that interaction will be eliminated through purifying selection. The system overall has complexified, although the outcome is the same. The rise of interdependent microbial communities has been posited to be explainable through this mechanism. Initially, the loss of a gene dedicated to producing an important resource for the cell would be deleterious. However, a community of microbes might have an excess of that resource. For this reason, the presence of these interspecies microbial interactions enables an otherwise deleterious mutation (loss of a gene needed for generating an important resource) to be acquired but without a deleterious effect on the individual. Genetic drift then results in this trait (or the loss thereof) to spread into the population, and the population of the species in the community is now dependent on its community for survival. While the individual species has simplified, the complexity of the microbial community overall has risen due to the requirement for additional and symbiotic interactions to propagate the community as a whole. [8]

Application

The BQH was proposed to explain the evolution of dependencies within free-living microbial communities, [6] [9] but was later extended to explain nitrogen fixation, nutrient acquisition and biofilm production in microbes. [4] More generally, it has also been used to explain gene loss via genome streamlining, [10] cooperative interactions [11] and evolution of communities. [12] Studies have also shown that local interactions within bacterial communities can promote the right amount of trade-off between resource production and resource limitation to stimulate mutual dependencies as proposed by BQH. [13] [14] This type of Black Queen dynamism has also been described in microbial and microbialite mats from Cuatro Ciénegas Coahuila where the particular physicochemical properties of the site have caused the microbial communities to remain practically isolated for millions of years. It has been observed that the bacteria of the genus Bacilus have substantially reduced their genomes, as well as they have shown an interdependence between the bacteria of that site, which has led to the suggestion of the existence of a pangenome or holobionts. [15]

Quorum Sensing and Partial Privatization of Goods

Quorum sensing is a regulatory process that plays a role in the management of partially privatized or mixed goods, as outlined in various studies. [16] [17] [18] However, there's a scarcity of evidence to support the idea that partial privatization alone can promote the evolution of quorum sensing.

A population genetics model focused on unstructured microbial populations has provided some insights. [19] The findings indicate that if autoinducers carry a cost, partial privatization will not give an evolutionary advantage to quorum sensing. The reasoning behind this conclusion is twofold:

  1. When autoinducers are costly, any microbial strain that simultaneously produces both the autoinducer and mixed goods is unlikely to maintain its presence within the population.
  2. Under the condition of costly autoinducers, partial privatization does not promote the metabolic specialization of quorum sensing. This is because strains that only produce autoinducers and strains that produce mixed goods in response to the autoinducers cannot coexist without being vulnerable to invasion by cheater strains.

From this model, it can be inferred that partial privatization might have been essential in supporting an early form of quorum sensing, where autoinducers were considered metabolic byproducts and thus had no associated costs. However, it seems to be inadequate for fostering the evolution to a state where autoinducers come with a cost. [20]

See also

Related Research Articles

In biology, quorum sensing or quorum signaling (QS) is the ability to detect and respond to cell population density by gene regulation. Quorum sensing is a type of cellular signaling, and more specifically can be considered a type of paracrine signaling. However, it also contains traits of both autocrine signaling: a cell produces both the autoinducer molecule and the receptor for the autoinducer. As one example, QS enables bacteria to restrict the expression of specific genes to the high cell densities at which the resulting phenotypes will be most beneficial, especially for phenotypes that would be ineffective at low cell densities and therefore too energetically costly to express. Many species of bacteria use quorum sensing to coordinate gene expression according to the density of their local population. In a similar fashion, some social insects use quorum sensing to determine where to nest. Quorum sensing in pathogenic bacteria activates host immune signaling and prolongs host survival, by limiting the bacterial intake of nutrients, such as tryptophan, which further is converted to serotonin. As such, quorum sensing allows a commensal interaction between host and pathogenic bacteria. Quorum sensing may also be useful for cancer cell communications.

<i>Lactobacillus acidophilus</i> Species of bacterium

Lactobacillus acidophilus is a rod-shaped, Gram-positive, homofermentative, anaerobic microbe first isolated from infant feces in the year 1900. The species is most commonly found in humans, specifically the gastrointestinal tract, oral cavity, and vagina, as well as various fermented foods such as fermented milk or yogurt. The species most readily grows at low pH levels, and has an optimum growth temperature of 37 °C. Certain strains of L. acidophilus show strong probiotic effects, and are commercially used in dairy production. The genome of L. acidophilus has been sequenced.

<span class="mw-page-title-main">Microbial ecology</span> Study of the relationship of microorganisms with their environment

Microbial ecology is the ecology of microorganisms: their relationship with one another and with their environment. It concerns the three major domains of life—Eukaryota, Archaea, and Bacteria—as well as viruses.

<span class="mw-page-title-main">Siderophore</span> Iron compounds secreted by microorganisms

Siderophores (Greek: "iron carrier") are small, high-affinity iron-chelating compounds that are secreted by microorganisms such as bacteria and fungi. They help the organism accumulate iron. Although a widening range of siderophore functions is now being appreciated, siderophores are among the strongest (highest affinity) Fe3+ binding agents known. Phytosiderophores are siderophores produced by plants.

<i>Aliivibrio fischeri</i> Species of bacterium

Aliivibrio fischeri is a Gram-negative, rod-shaped bacterium found globally in marine environments. This species has bioluminescent properties, and is found predominantly in symbiosis with various marine animals, such as the Hawaiian bobtail squid. It is heterotrophic, oxidase-positive, and motile by means of a single polar flagella. Free-living A. fischeri cells survive on decaying organic matter. The bacterium is a key research organism for examination of microbial bioluminescence, quorum sensing, and bacterial-animal symbiosis. It is named after Bernhard Fischer, a German microbiologist.

<i>N</i>-Acyl homoserine lactone Class of chemical compounds

N-Acyl homoserine lactones are a class of signaling molecules involved in bacterial quorum sensing, a means of communication between bacteria enabling behaviors based on population density.

<i>Pseudomonas aeruginosa</i> Species of bacterium

Pseudomonas aeruginosa is a common encapsulated, Gram-negative, aerobic–facultatively anaerobic, rod-shaped bacterium that can cause disease in plants and animals, including humans. A species of considerable medical importance, P. aeruginosa is a multidrug resistant pathogen recognized for its ubiquity, its intrinsically advanced antibiotic resistance mechanisms, and its association with serious illnesses – hospital-acquired infections such as ventilator-associated pneumonia and various sepsis syndromes.

Cheating is a term used in behavioral ecology and ethology to describe behavior whereby organisms receive a benefit at the cost of other organisms. Cheating is common in many mutualistic and altruistic relationships. A cheater is an individual who does not cooperate but can potentially gain the benefit from others cooperating. Cheaters are also those who selfishly use common resources to maximize their individual fitness at the expense of a group. Natural selection favors cheating, but there are mechanisms to regulate it. The stress gradient hypothesis states that facilitation, cooperation or mutualism should be more common in stressful environments, while cheating, competition or parasitism are common in benign environments.

Autoinducers are signaling molecules that are produced in response to changes in cell-population density. As the density of quorum sensing bacterial cells increases so does the concentration of the autoinducer. Detection of signal molecules by bacteria acts as stimulation which leads to altered gene expression once the minimal threshold is reached. Quorum sensing is a phenomenon that allows both Gram-negative and Gram-positive bacteria to sense one another and to regulate a wide variety of physiological activities. Such activities include symbiosis, virulence, motility, antibiotic production, and biofilm formation. Autoinducers come in a number of different forms depending on the species, but the effect that they have is similar in many cases. Autoinducers allow bacteria to communicate both within and between different species. This communication alters gene expression and allows bacteria to mount coordinated responses to their environments, in a manner that is comparable to behavior and signaling in higher organisms. Not surprisingly, it has been suggested that quorum sensing may have been an important evolutionary milestone that ultimately gave rise to multicellular life forms.

<span class="mw-page-title-main">MicrobesOnline</span>

MicrobesOnline is a publicly and freely accessible website that hosts multiple comparative genomic tools for comparing microbial species at the genomic, transcriptomic and functional levels. MicrobesOnline was developed by the Virtual Institute for Microbial Stress and Survival, which is based at the Lawrence Berkeley National Laboratory in Berkeley, California. The site was launched in 2005, with regular updates until 2011.

<span class="mw-page-title-main">Archaea</span> Domain of single-celled organisms

Archaea is a domain of single-celled organisms. These microorganisms lack cell nuclei and are therefore prokaryotes. Archaea were initially classified as bacteria, receiving the name archaebacteria, but this term has fallen out of use.

Pathogenomics is a field which uses high-throughput screening technology and bioinformatics to study encoded microbe resistance, as well as virulence factors (VFs), which enable a microorganism to infect a host and possibly cause disease. This includes studying genomes of pathogens which cannot be cultured outside of a host. In the past, researchers and medical professionals found it difficult to study and understand pathogenic traits of infectious organisms. With newer technology, pathogen genomes can be identified and sequenced in a much shorter time and at a lower cost, thus improving the ability to diagnose, treat, and even predict and prevent pathogenic infections and disease. It has also allowed researchers to better understand genome evolution events - gene loss, gain, duplication, rearrangement - and how those events impact pathogen resistance and ability to cause disease. This influx of information has created a need for bioinformatics tools and databases to analyze and make the vast amounts of data accessible to researchers, and it has raised ethical questions about the wisdom of reconstructing previously extinct and deadly pathogens in order to better understand virulence.

Microorganisms engage in a wide variety of social interactions, including cooperation. A cooperative behavior is one that benefits an individual other than the one performing the behavior. This article outlines the various forms of cooperative interactions seen in microbial systems, as well as the benefits that might have driven the evolution of these complex behaviors.

The hologenome theory of evolution recasts the individual animal or plant as a community or a "holobiont" – the host plus all of its symbiotic microbes. Consequently, the collective genomes of the holobiont form a "hologenome". Holobionts and hologenomes are structural entities that replace misnomers in the context of host-microbiota symbioses such as superorganism, organ, and metagenome. Variation in the hologenome may encode phenotypic plasticity of the holobiont and can be subject to evolutionary changes caused by selection and drift, if portions of the hologenome are transmitted between generations with reasonable fidelity. One of the important outcomes of recasting the individual as a holobiont subject to evolutionary forces is that genetic variation in the hologenome can be brought about by changes in the host genome and also by changes in the microbiome, including new acquisitions of microbes, horizontal gene transfers, and changes in microbial abundance within hosts. Although there is a rich literature on binary host–microbe symbioses, the hologenome concept distinguishes itself by including the vast symbiotic complexity inherent in many multicellular hosts. For recent literature on holobionts and hologenomes published in an open access platform, see the following reference.

<span class="mw-page-title-main">Bioluminescent bacteria</span>

Bioluminescent bacteria are light-producing bacteria that are predominantly present in sea water, marine sediments, the surface of decomposing fish and in the gut of marine animals. While not as common, bacterial bioluminescence is also found in terrestrial and freshwater bacteria. These bacteria may be free living or in symbiosis with animals such as the Hawaiian Bobtail squid or terrestrial nematodes. The host organisms provide these bacteria a safe home and sufficient nutrition. In exchange, the hosts use the light produced by the bacteria for camouflage, prey and/or mate attraction. Bioluminescent bacteria have evolved symbiotic relationships with other organisms in which both participants benefit close to equally. Another possible reason bacteria use luminescence reaction is for quorum sensing, an ability to regulate gene expression in response to bacterial cell density.

<span class="mw-page-title-main">Microbiome</span> Microbial community assemblage and activity

A microbiome is the community of microorganisms that can usually be found living together in any given habitat. It was defined more precisely in 1988 by Whipps et al. as "a characteristic microbial community occupying a reasonably well-defined habitat which has distinct physio-chemical properties. The term thus not only refers to the microorganisms involved but also encompasses their theatre of activity". In 2020, an international panel of experts published the outcome of their discussions on the definition of the microbiome. They proposed a definition of the microbiome based on a revival of the "compact, clear, and comprehensive description of the term" as originally provided by Whipps et al., but supplemented with two explanatory paragraphs. The first explanatory paragraph pronounces the dynamic character of the microbiome, and the second explanatory paragraph clearly separates the term microbiota from the term microbiome.

<span class="mw-page-title-main">Holobiont</span> Host and associated species living as a discrete ecological unit

A holobiont is an assemblage of a host and the many other species living in or around it, which together form a discrete ecological unit through symbiosis, though there is controversy over this discreteness. The components of a holobiont are individual species or bionts, while the combined genome of all bionts is the hologenome. The holobiont concept was initially introduced by the German theoretical biologist Adolf Meyer-Abich in 1943, and then apparently independently by Dr. Lynn Margulis in her 1991 book Symbiosis as a Source of Evolutionary Innovation. The concept has evolved since the original formulations. Holobionts include the host, virome, microbiome, and any other organisms which contribute in some way to the functioning of the whole. Well-studied holobionts include reef-building corals and humans.

Hologenomics is the omics study of hologenomes. A hologenome is the whole set of genomes of a holobiont, an organism together with all co-habitating microbes, other life forms, and viruses. While the term hologenome originated from the hologenome theory of evolution, which postulates that natural selection occurs on the holobiont level, hologenomics uses an integrative framework to investigate interactions between the host and its associated species. Examples include gut microbe or viral genomes linked to human or animal genomes for host-microbe interaction research. Hologenomics approaches have also been used to explain genetic diversity in the microbial communities of marine sponges.

<span class="mw-page-title-main">Plant holobiont</span>

Since the colonization of land by ancestral plant lineages 450 million years ago, plants and their associated microbes have been interacting with each other, forming an assemblage of species that is often referred to as a holobiont. Selective pressure acting on holobiont components has likely shaped plant-associated microbial communities and selected for host-adapted microorganisms that impact plant fitness. However, the high microbial densities detected on plant tissues, together with the fast generation time of microbes and their more ancient origin compared to their host, suggest that microbe-microbe interactions are also important selective forces sculpting complex microbial assemblages in the phyllosphere, rhizosphere, and plant endosphere compartments.

Constructive neutral evolution(CNE) is a theory that seeks to explain how complex systems can evolve through neutral transitions and spread through a population by chance fixation (genetic drift). Constructive neutral evolution is a competitor for both adaptationist explanations for the emergence of complex traits and hypotheses positing that a complex trait emerged as a response to a deleterious development in an organism. Constructive neutral evolution often leads to irreversible or "irremediable" complexity and produces systems which, instead of being finely adapted for performing a task, represent an excess complexity that has been described with terms such as "runaway bureaucracy" or even a "Rube Goldberg machine".

References

  1. Bruijn, Frans J. de (2016-09-06). Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria, 2 Volume Set. John Wiley & Sons. pp. 1202, 1203. ISBN   9781119004882.
  2. Kolb, Vera M. (2018-12-24). Handbook of Astrobiology. CRC Press. ISBN   9781351661102.
  3. Morris, JJ (May 2011). "The Helper Phenotype: A Symbiotic Interaction Between Prochlorococcus and Hydrogen Peroxide Scavenging Microorganisms". Doctoral Dissertations. University of Tennessee: 128–131.
  4. 1 2 3 4 Morris, J. Jeffrey; Lenski, Richard E.; Zinser, Erik R. (March 23, 2012). "The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss". mBio. 3 (2). doi:10.1128/mBio.00036-12. PMC   3315703 . PMID   22448042.
  5. Kerfoot, W. Charles; Weider, Lawrence J. (2004-01-31). "Experimental paleoecology (resurrection ecology): Chasing Van Valen's Red Queen hypothesis". Limnology and Oceanography. 49 (4part2): 1300–1316. Bibcode:2004LimOc..49.1300K. doi: 10.4319/lo.2004.49.4_part_2.1300 . ISSN   0024-3590.
  6. 1 2 Mas, Alix; Jamshidi, Shahrad; Lagadeuc, Yvan; Eveillard, Damien; Vandenkoornhuyse, Philippe (March 8, 2016). "Beyond the black queen hypothesis". The ISME Journal. 10 (9): 2085–2091. doi:10.1038/ismej.2016.22. PMC   4989313 . PMID   26953598.
  7. 1 2 3 Fullmer, Matthew S.; Soucy, Shannon M.; Gogarten, Johann Peter (2015-07-21). "The pan-genome as a shared genomic resource: mutual cheating, cooperation and the black queen hypothesis". Frontiers in Microbiology. 6: 728. doi: 10.3389/fmicb.2015.00728 . ISSN   1664-302X. PMC   4523029 . PMID   26284032.
  8. 1 2 Brunet, T. D. P.; Doolittle, W. Ford (2018-03-19). "The generality of Constructive Neutral Evolution". Biology & Philosophy. 33 (1): 2. doi:10.1007/s10539-018-9614-6. ISSN   1572-8404. S2CID   90290787.
  9. Morris, J. Jeffrey; Papoulis, Spiridon E.; Lenski, Richard E. (2014-08-01). "Coexistence of Evolving Bacteria Stabilized by a Shared Black Queen Function". Evolution. 68 (10): 2960–2971. doi: 10.1111/evo.12485 . ISSN   0014-3820. PMID   24989794. S2CID   2554753.
  10. Giovannoni, Stephen J; Cameron Thrash, J; Temperton, Ben (2014-04-17). "Implications of streamlining theory for microbial ecology". The ISME Journal. 8 (8): 1553–1565. doi: 10.1038/ismej.2014.60 . ISSN   1751-7362. PMC   4817614 . PMID   24739623.
  11. Sachs, J. L.; Hollowell, A. C. (2012-04-24). "The Origins of Cooperative Bacterial Communities". mBio. 3 (3). doi: 10.1128/mbio.00099-12 . ISSN   2150-7511. PMC   3340918 . PMID   22532558.
  12. Hanson, Niels W; Konwar, Kishori M; Hawley, Alyse K; Altman, Tomer; Karp, Peter D; Hallam, Steven J (2014). "Metabolic pathways for the whole community". BMC Genomics. 15 (1): 619. doi: 10.1186/1471-2164-15-619 . ISSN   1471-2164. PMC   4137073 . PMID   25048541.
  13. Stump, Simon Maccracken; Johnson, Evan Curtis; Sun, Zepeng; Klausmeier, Christopher A. (June 2018). "How spatial structure and neighbor uncertainty promote mutualists and weaken black queen effects". Journal of Theoretical Biology. 446: 33–60. Bibcode:2018JThBi.446...33S. doi: 10.1016/j.jtbi.2018.02.031 . ISSN   0022-5193. PMID   29499252.
  14. Kehe, Jared; Ortiz, Anthony; Kulesa, Anthony; Gore, Jeff; Blainey, Paul C.; Friedman, Jonathan (2021). "Positive interactions are common among culturable bacteria". Science Advances. 7 (45): eabi7159. Bibcode:2021SciA....7.7159K. doi:10.1126/sciadv.abi7159. PMC   8570599 . PMID   34739314.
  15. Souza, Valeria; Moreno-Letelier, Alejandra; Travisano, Michael; Alcaraz, Luis David; Olmedo, Gabriela; Eguiarte, Luis Enrique (2018-09-10). "Author response: The lost world of Cuatro Ciénegas Basin, a relictual bacterial niche in a desert oasis". doi: 10.7554/elife.38278.016 .{{cite journal}}: Cite journal requires |journal= (help)
  16. Jin, Zhenyu; Li, Jiahong; Ni, Lei; Zhang, Rongrong; Xia, Aiguo; Jin, Fan (11 April 2018). "Conditional privatization of a public siderophore enables Pseudomonas aeruginosa to resist cheater invasion". Nature Communications. 9 (1). doi: 10.1038/s41467-018-03791-y . PMC   5895777 .
  17. Kümmerli, Rolf; Schiessl, Konstanze T.; Waldvogel, Tuija; McNeill, Kristopher; Ackermann, Martin (December 2014). "Habitat structure and the evolution of diffusible siderophores in bacteria". Ecology Letters. 17 (12): 1536–1544. doi:10.1111/ele.12371.
  18. Visca, Paolo; Imperi, Francesco; Lamont, Iain L.; Zhang, Rongrong; Xia, Aiguo; Jin, Fan (January 2007). "Pyoverdine siderophores: from biogenesis to biosignificance". Trends in Microbiology. 15 (1): 22–30. doi:10.1016/j.tim.2006.11.004.
  19. Souza, Lucas Santana; Irie, Yasuhiko; Eda, Shigetoshi (30 November 2022). "Black Queen Hypothesis, partial privatization, and quorum sensing evolution". PLOS ONE. 17 (11): e0278449. doi: 10.1371/journal.pone.0278449 .
  20. Souza, Lucas Santana; Irie, Yasuhiko; Eda, Shigetoshi (30 November 2022). "Black Queen Hypothesis, partial privatization, and quorum sensing evolution". PLOS ONE. 17 (11): e0278449. doi: 10.1371/journal.pone.0278449 .