Michael Travisano

Last updated
Michael Travisano
Michael Travisano.jpg
Michael Travisano in 2021
Born (1961-02-12) February 12, 1961 (age 63)
Alma mater Columbia University
Michigan State University
Scientific career
Fields Evolutionary biology
Institutions University of Houston
University of Minnesota Twin Cities

Michael Travisano (born February 12, 1961) is an American evolutionary biologist, and a Distinguished McKnight University Professor at the University of Minnesota Twin Cities. In 2020, he started his position as Head Department in Ecology, Evolution & Behavior Department at the College of Biological Sciences.

Contents

Early life

Born in Nashville, Tennessee, Travisano is the son of Neil Travisano and Jo Anne Scriffiano. At the age of two he moved to Newark, New Jersey and remain there until 1969. He earned his Astrophysics BA from Columbia University in 1983. [1] Later in 1993, he obtained his PhD in Zoology from the Michigan State University.

Early career

Since 1983 he worked as laboratory technician in Charles Geard Radiology Research, Columbia University Physicians and Sciences. From 1986 to 1987 in Les Redpath Radiology, UC-Irvine. And from 1987 to 1988 at Richard Lenski laboratory. In 1993, he started his postdoctoral fellowship at the RIKEN Institute until 1994 in Saitama, Japan. Three years later from 1997 to 1999, Travisano did his second postdoctoral research at Oxford University, in the Department of Plant Sciences.

In 1999, he accepted a position as Assistant Professor at the University of Houston, where he was promoted to Associate Professor in 2006.

10,000 generations of E. coli

During his PhD at Michigan State University, Travisano worked in the long-term E. coli evolution experiment. [2] in Richard Lenski lab, following the evolutionary change in 12 populations of Escherichia coli propagated in 10,000 generations in identical environments. This works suggests chance events, such as mutation and drift, play an important role in adaptive evolution, as do the complex genetic interactions that underlie the structure of organisms. [2]

Academic work

His research mainly focus on experimental evolution, ecology and origins of life using microorganisms as models. The techniques of experimental evolution exploit the short-generation times of microbes to observe evolution in action, and to test explicit hypotheses about the effects of environmental manipulations on these processes. One main topic within experimental evolution research is the origin of multicellularity and its traits.

Although his primary appointment is in EEB he is also: 1) a member of the Biotechnology Institute; 2) the graduate program in microbial engineering; 3) the graduate program in plant and microbial biology; and 4) a resident fellow in the Minnesota Center for the Philosophy of Science.

Evolution of the multicellular "snowflake phenotype in S. cerevisiae Multicellular.png
Evolution of the multicellular "snowflake phenotype in S. cerevisiae

Multicellularity

The evolution of multicellularity is arguably the most significant innovation in the history of life after the origin of life itself. [3] The Travisano group showed that settling in a static test tube provided a simple selection scheme that favored the formation of multicellular clonal clusters in yeast--dubbed ‘snowflakes’ . Early multicellular clusters were composed of physiologically similar cells, but these subsequently evolved higher rates of programmed cell death, as is seen in the protective boundary of skin cells. In snowflake yeast, programmed cell death is an adaptation that increased cluster production. [3]

Niceness

Genes compete with one another for representation in the next generation, and the competitive nature of this process would seem to disfavor cooperation and niceness. Cells of brewer’s yeast release an enzyme that breaks indigestibly large sugar molecules into smaller, more easily digestible subunits. These digestible subunits are available to any yeast cell in the neighborhood, and the enzyme is costly, so surely selection should favor cheaters who chow down on the sugar subunits but don’t secrete the costly enzyme. Greig & Travisano, showed that selection for and against these cheaters depended on population size. Cheaters persist when populations are large, and when many ‘nice enzyme-secreting’ enzyme-secreting’ cells are around, but selection acts against cheaters when populations are low. [4]

Wrinkly Spreader (WS-3) Wrinkly Spreader (WS-3).tif
Wrinkly Spreader (WS-3)

Speciation

The mechanisms through which this separation is achieved are clearly fundamental to our understanding of the diversity of living things, since species are the raw material of organic diversity. Working with his postdoctoral associate, Duncan Greig, Travisano experimentally demonstrated speciation in the laboratory via a previously unknown mechanism. Publishing in Science, they reported that when a hybrid strain of yeast self-fertilizes its offspring are incompatible with either parent species but they produce fertile offspring when mated to each other: generating what is effectively an instant reproductively isolated species. [5]

Adaptive radiation

The Travisano-Rainey studies showed that in a matter of days, a single bacterium of Pseudomonas fluorescens will reproduce and evolve into three distinct lineages: one colonizes the air-water interface by forming a mat, one colonizes the bulk medium and one colonizes the anoxic environment at the bottom of the test tube. This happens if the test tube is unshaken, but not in a shaken test tube: demonstrating that environmental heterogeneity (like the different habitats of different islands) is key to the process of adaptive radiation [6]

Related Research Articles

<span class="mw-page-title-main">Cell (biology)</span> Basic unit of many life forms

The cell is the basic structural and functional unit of all forms of life. Every cell consists of cytoplasm enclosed within a membrane; many cells contain organelles, each with a specific function. The term comes from the Latin word cellula meaning 'small room'. Most cells are only visible under a microscope. Cells emerged on Earth about 4 billion years ago. All cells are capable of replication, protein synthesis, and motility.

Macroevolution usually means the evolution of large-scale structures and traits that go significantly beyond the intraspecific variation found in microevolution. In other words, macroevolution is the evolution of taxa above the species level.

<span class="mw-page-title-main">Multicellular organism</span> Organism that consists of more than one cell

A multicellular organism is an organism that consists of more than one cell, in contrast to unicellular organism. All species of animals, land plants and most fungi are multicellular, as are many algae, whereas a few organisms are partially uni- and partially multicellular, like slime molds and social amoebae such as the genus Dictyostelium.

<span class="mw-page-title-main">Evolution of sexual reproduction</span> How sexually reproducing multicellular organisms could have evolved from a common ancestor species

Evolution of sexual reproduction describes how sexually reproducing animals, plants, fungi and protists could have evolved from a common ancestor that was a single-celled eukaryotic species. Sexual reproduction is widespread in eukaryotes, though a few eukaryotic species have secondarily lost the ability to reproduce sexually, such as Bdelloidea, and some plants and animals routinely reproduce asexually without entirely having lost sex. The evolution of sexual reproduction contains two related yet distinct themes: its origin and its maintenance. Bacteria and Archaea (prokaryotes) have processes that can transfer DNA from one cell to another, but it is unclear if these processes are evolutionarily related to sexual reproduction in Eukaryotes. In eukaryotes, true sexual reproduction by meiosis and cell fusion is thought to have arisen in the last eukaryotic common ancestor, possibly via several processes of varying success, and then to have persisted.

Experimental evolution is the use of laboratory experiments or controlled field manipulations to explore evolutionary dynamics. Evolution may be observed in the laboratory as individuals/populations adapt to new environmental conditions by natural selection.

Evolvability is defined as the capacity of a system for adaptive evolution. Evolvability is the ability of a population of organisms to not merely generate genetic diversity, but to generate adaptive genetic diversity, and thereby evolve through natural selection.

Peter G. Schultz is an American chemist. He is the CEO and Professor of Chemistry at The Scripps Research Institute, the founder and former director of GNF, and the founding director of the California Institute for Biomedical Research (Calibr), established in 2012. In August 2014, Nature Biotechnology ranked Schultz the #1 top translational researcher in 2013.

Exaptation and the related term co-option describe a shift in the function of a trait during evolution. For example, a trait can evolve because it served one particular function, but subsequently it may come to serve another. Exaptations are common in both anatomy and behaviour.

<span class="mw-page-title-main">Mutation rate</span> Rate at which mutations occur during some unit of time

In genetics, the mutation rate is the frequency of new mutations in a single gene, nucleotide sequence, or organism over time. Mutation rates are not constant and are not limited to a single type of mutation; there are many different types of mutations. Mutation rates are given for specific classes of mutations. Point mutations are a class of mutations which are changes to a single base. Missense and Nonsense mutations are two subtypes of point mutations. The rate of these types of substitutions can be further subdivided into a mutation spectrum which describes the influence of the genetic context on the mutation rate.

<span class="mw-page-title-main">Richard Lenski</span> American evolutionary biologist

Richard Eimer Lenski is an American evolutionary biologist, a Hannah Distinguished Professor of Microbial Ecology, Genetics and Evolution, and Evolution of Pathogen Virulence at Michigan State University. He is a member of the National Academy of Sciences and a MacArthur Fellow. Lenski is best known for his still ongoing 36-year-old long-term E. coli evolution experiment, which has been instrumental in understanding the core processes of evolution, including mutation rates, clonal interference, antibiotic resistance, the evolution of novel traits, and speciation. He is also well known for his pioneering work in studying evolution digitally using self-replicating organisms called Avida.

<span class="mw-page-title-main">Directed evolution</span> Protein engineering method

Directed evolution (DE) is a method used in protein engineering that mimics the process of natural selection to steer proteins or nucleic acids toward a user-defined goal. It consists of subjecting a gene to iterative rounds of mutagenesis, selection and amplification. It can be performed in vivo, or in vitro. Directed evolution is used both for protein engineering as an alternative to rationally designing modified proteins, as well as for experimental evolution studies of fundamental evolutionary principles in a controlled, laboratory environment.

Microbial genetics is a subject area within microbiology and genetic engineering. Microbial genetics studies microorganisms for different purposes. The microorganisms that are observed are bacteria and archaea. Some fungi and protozoa are also subjects used to study in this field. The studies of microorganisms involve studies of genotype and expression system. Genotypes are the inherited compositions of an organism. Genetic Engineering is a field of work and study within microbial genetics. The usage of recombinant DNA technology is a process of this work. The process involves creating recombinant DNA molecules through manipulating a DNA sequence. That DNA created is then in contact with a host organism. Cloning is also an example of genetic engineering.

Adaptive mutation, also called directed mutation or directed mutagenesis is a controversial evolutionary theory. It posits that mutations, or genetic changes, are much less random and more purposeful than traditional evolution, implying that organisms can respond to environmental stresses by directing mutations to certain genes or areas of the genome. There have been a wide variety of experiments trying to support the idea of adaptive mutation, at least in microorganisms.

<i>E. coli</i> long-term evolution experiment Scientific study

The E. coli long-term evolution experiment (LTEE) is an ongoing study in experimental evolution begun by Richard Lenski at the University of California, Irvine, carried on by Lenski and colleagues at Michigan State University, and currently overseen by Jeffrey E. Barrick at the University of Texas at Austin. It has been tracking genetic changes in 12 initially identical populations of asexual Escherichia coli bacteria since 24 February 1988. Lenski performed the 10,000th transfer of the experiment on March 13, 2017. The populations reached over 73,000 generations in early 2020, shortly before being frozen because of the COVID-19 pandemic. In September 2020, the LTEE experiment was resumed using the frozen stocks.

Microorganisms engage in a wide variety of social interactions, including cooperation. A cooperative behavior is one that benefits an individual other than the one performing the behavior. This article outlines the various forms of cooperative interactions seen in microbial systems, as well as the benefits that might have driven the evolution of these complex behaviors.

<span class="mw-page-title-main">Allorecognition</span>

Allorecognition is the ability of an individual organism to distinguish its own tissues from those of another. It manifests itself in the recognition of antigens expressed on the surface of cells of non-self origin. Allorecognition has been described in nearly all multicellular phyla.

<span class="mw-page-title-main">Evolving digital ecological network</span>

Evolving digital ecological networks are webs of interacting, self-replicating, and evolving computer programs that experience the same major ecological interactions as biological organisms. Despite being computational, these programs evolve quickly in an open-ended way, and starting from only one or two ancestral organisms, the formation of ecological networks can be observed in real-time by tracking interactions between the constantly evolving organism phenotypes. These phenotypes may be defined by combinations of logical computations that digital organisms perform and by expressed behaviors that have evolved. The types and outcomes of interactions between phenotypes are determined by task overlap for logic-defined phenotypes and by responses to encounters in the case of behavioral phenotypes. Biologists use these evolving networks to study active and fundamental topics within evolutionary ecology.

<i>Candida tropicalis</i> Species of fungus

Candida tropicalis is a species of yeast in the genus Candida. It is a common pathogen in neutropenic hosts, in whom it may spread through the bloodstream to peripheral organs. For invasive disease, treatments include amphotericin B, echinocandins, or extended-spectrum triazole antifungals.

<span class="mw-page-title-main">Laboratory experiments of speciation</span> Biological experiments

Laboratory experiments of speciation have been conducted for all four modes of speciation: allopatric, peripatric, parapatric, and sympatric; and various other processes involving speciation: hybridization, reinforcement, founder effects, among others. Most of the experiments have been done on flies, in particular Drosophila fruit flies. However, more recent studies have tested yeasts, fungi, and even viruses.

Albert Farrell Bennett is an American zoologist, physiologist, evolutionary biologist, author, and academic. He is Dean Emeritus of the School of Biological Sciences at University of California, Irvine.

References

  1. "Class of 1983". Columbia College Report. Retrieved 2022-08-13.
  2. 1 2 Lenski, R. E.; Travisano, M. (1994-07-19). "Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations". Proceedings of the National Academy of Sciences. 91 (15): 6808–6814. Bibcode:1994PNAS...91.6808L. doi: 10.1073/pnas.91.15.6808 . ISSN   0027-8424. PMC   44287 . PMID   8041701.
  3. 1 2 Ratcliff, William C.; Denison, R. Ford; Borrello, Mark; Travisano, Michael (2012-01-31). "Experimental evolution of multicellularity". Proceedings of the National Academy of Sciences. 109 (5): 1595–1600. Bibcode:2012PNAS..109.1595R. doi: 10.1073/pnas.1115323109 . ISSN   0027-8424. PMC   3277146 . PMID   22307617.
  4. Greig, Duncan; Travisano, Michael (2004-02-07). "The Prisoner's Dilemma and polymorphism in yeast SUC genes". Proceedings of the Royal Society of London. Series B: Biological Sciences. 271 (suppl_3): S25–S26. doi:10.1098/rsbl.2003.0083. PMC   1810003 . PMID   15101409.
  5. Greig, Duncan; Louis, Edward J.; Borts, Rhona H.; Travisano, Michael (2002-11-29). "Hybrid speciation in experimental populations of yeast". Science. 298 (5599): 1773–1775. Bibcode:2002Sci...298.1773G. doi:10.1126/science.1076374. ISSN   1095-9203. PMID   12459586. S2CID   29972396.
  6. Rainey, Paul B.; Travisano, Michael (July 1998). "Adaptive radiation in a heterogeneous environment" . Nature. 394 (6688): 69–72. Bibcode:1998Natur.394...69R. doi:10.1038/27900. ISSN   1476-4687. PMID   9665128. S2CID   40896184.