Auditory arrhythmia

Last updated

Auditory arrhythmia is the inability to rhythmically perform music, to keep time, and to replicate musical or rhythmic patterns. It has been caused by damage to the cerebrum or rewiring of the brain. [1]

Contents

Characteristics

An individual with this condition has an especially difficult time maintaining a steady beat, and even has difficulty following along to a steady rhythm. Before it was a known disorder, it was thought that these individuals were just severely uncoordinated, and therefore were unable to follow along with the music. It has been discovered recently that problems with rhythm in schizophrenia, Parkinson's disease, and attention deficit hyperactivity disorder are also found to have a correlation to rhythm deficiencies. [2]

Neurological bases of music

The cerebellum houses the center for fine motor skills. These are needed in order to play the instrument.[ citation needed ]

The temporal lobe and the frontal lobe are necessary for listening and recalling different musical aspects from lyrics, reading the music, and performing.

Memory centers are primarily located in the hippocampus, and the process of listening to music originates there.

Neuroplasticity allows the brain to grow and change, especially in the auditory and motor cortex. Listening and playing music helps both of these areas of the brain to develop more, which was found to be correlated to having an improves auditory imagery in many performers in a study conducted at Utrecht University in the Netherlands. [3]

Similar diagnoses

Auditory arrhythmia can also be confused with something called beat deafness. Beat deafness is a form of congenital amusia, which is a person's inability to move in time to the music, or feel a musical rhythm. It is believed by researchers that beat deafness stems from a connection problem between the brain's auditory cortex and inferior frontal lobe. A postdoctoral researcher with the International Laboratory for Brain, Music, and Sound Research at the University of Montreal studied a case where a man could not feel a rhythm in any sense. Not only did he have difficulty dancing, but he was unable to tap his foot or snap his fingers along with the beat of the music. [1] The major difference between beat deafness and auditory arrhythmia, however, is that beat deafness is most likely something you are born with, whereas the arrhythmia most likely comes from damage, which was the case in the research done on "Mathieu," the first known case of beat-deafness. [4] In another case, a former musician known as H.J. had damage from a temporoparietal infarct, which is an area of dead tissue due to lack of adequate blood supply. The infarct was believed to have been caused by a problem during a coronary angiography, which is a test to show the insides of an individual's coronary arteries. H.J. had difficulties with creating a steady beat, an inability to distinguish between different sets of rhythms, and also experienced difficulties when playing his instruments. [1]

Rhythmic problems in animals other than humans

Research was conducted on birds such as the Zebra Finch because this species has parallels to humans' vocal learning patterns and neurological structures. Adult zebra finches were placed in similar conditions, all exposed to nine rhythmic and nine arrhythmic songs for 30 second increments. After the stimulus was presented, the brains were studied for areas of high ZENK concentration, ZENK being an immunohistochemical used to detect neural activation. It was found in the finches that those exposed to the arrhythmic music had much higher levels of the ZENK gene, and it has been discovered that there is a correlation with humans having higher brain activity in these locations with arrhythmic functioning. Gaining an understanding of how to change the deficiencies in these animals can help lead to changes in the future for humans with auditory arrhythmia and other serious psychiatric disorders. [2]

Auditory processing in those with autism

Those diagnosed with autism tend to have many difficulties processing auditory stimuli. For example, they most often endure language and speech delays, hyperacusis, have difficulties communicating in large social groups, and may experience difficulties hearing certain voices in a noisy environment. These qualities make quality of life difficult, by inhibiting their ability to fully participate in social and educational circumstances in various parts of their lives. As shown in research published in the International Journal of Psychophysiology, efferent pathways throughout the brain help to control various functions throughout the body. For example, in those with autism, pathways running through to the middle ear muscles make it difficult for the person to focus on a single voice when there is a lot of background noise. Raising eyelids was also found to hinder the stapedius muscle by tensing it, which in turn makes it difficult for these individuals to hear other talking when there is background noise present. The laryngeal and pharyngeal muscles located in the throat make prosody and intonation difficult to understand for people with autism. During research, tasks and tests were conducted to see if there is a correlation between cardiac rhythms, respiratory sinus arrhythmias, and auditory processing, or auditory arrhythmia. Because these symptoms tend to go hand in hand, researchers were looking to see if there was a possibility of improving auditory processing. If researchers learn how to effectively improve auditory sensations in people diagnose with autism, then there is a possibility that they can then begin finding the improvement for those only with auditory arrhythmia. [5]

Recent research

The Easter Seals Metropolitan Chicago Therapeutic School and Center for Autism Research has conducted studies on auditory processing in individuals with autism. [5] The International Laboratory for Brain, Music, and Sound Research at the University of Montreal has found that beat and tone deafness are likely genetic, and believe that it is because of a miswiring between the auditory cortex and inferior frontal cortex. [4] They were also major researchers on Mathieu's case of beat deafness. [4] Studies conducted at Utrecht University in the Netherlands show that there is an association with an improves ability for auditory imagery and music. [3] McGill University also studied Mathieu's case, along with another individual known as Marjorie. The studies conducted show that true beat deafness is an extremely rare disorder, because out of all the individuals who applied thinking they were beat deaf, Marjorie and Mathieu were the only two. [6] H.J.'s case has been studied in Victoria, Australia at the University of Melbourne and La Trobe University. The data collected caused researchers to believe that the right temporal auditory cortex plays a large role in an individual's ability to maintain a steady rhythm, and has provided a platform for future neuropsychological research. [1]

Related Research Articles

<span class="mw-page-title-main">Language center</span> Speech processing areas of the brain

In neuroscience and psychology, the term language center refers collectively to the areas of the brain which serve a particular function for speech processing and production. Language is a core system that gives humans the capacity to solve difficult problems and provides them with a unique type of social interaction. Language allows individuals to attribute symbols to specific concepts, and utilize them through sentences and phrases that follow proper grammatical rules. Finally, speech is the mechanism by which language is orally expressed.

A communication disorder is any disorder that affects an individual's ability to comprehend, detect, or apply language and speech to engage in dialogue effectively with others. The delays and disorders can range from simple sound substitution to the inability to understand or use one's native language.

Agraphia is an acquired neurological disorder causing a loss in the ability to communicate through writing, either due to some form of motor dysfunction or an inability to spell. The loss of writing ability may present with other language or neurological disorders; disorders appearing commonly with agraphia are alexia, aphasia, dysarthria, agnosia, acalculia and apraxia. The study of individuals with agraphia may provide more information about the pathways involved in writing, both language related and motoric. Agraphia cannot be directly treated, but individuals can learn techniques to help regain and rehabilitate some of their previous writing abilities. These techniques differ depending on the type of agraphia.

<span class="mw-page-title-main">Temporal lobe</span> One of the four lobes of the mammalian brain

The temporal lobe is one of the four major lobes of the cerebral cortex in the brain of mammals. The temporal lobe is located beneath the lateral fissure on both cerebral hemispheres of the mammalian brain.

<span class="mw-page-title-main">Superior temporal gyrus</span> One of three gyri of the temporal lobe of the brain

The superior temporal gyrus (STG) is one of three gyri in the temporal lobe of the human brain, which is located laterally to the head, situated somewhat above the external ear.

Amusia is a musical disorder that appears mainly as a defect in processing pitch but also encompasses musical memory and recognition. Two main classifications of amusia exist: acquired amusia, which occurs as a result of brain damage, and congenital amusia, which results from a music-processing anomaly present since birth.

Auditory verbal agnosia (AVA), also known as pure word deafness, is the inability to comprehend speech. Individuals with this disorder lose the ability to understand language, repeat words, and write from dictation. Some patients with AVA describe hearing spoken language as meaningless noise, often as though the person speaking was doing so in a foreign language. However, spontaneous speaking, reading, and writing are preserved. The maintenance of the ability to process non-speech auditory information, including music, also remains relatively more intact than spoken language comprehension. Individuals who exhibit pure word deafness are also still able to recognize non-verbal sounds. The ability to interpret language via lip reading, hand gestures, and context clues is preserved as well. Sometimes, this agnosia is preceded by cortical deafness; however, this is not always the case. Researchers have documented that in most patients exhibiting auditory verbal agnosia, the discrimination of consonants is more difficult than that of vowels, but as with most neurological disorders, there is variation among patients.

Auditory processing disorder (APD), rarely known as King-Kopetzky syndrome or auditory disability with normal hearing (ADN), is a neurodevelopmental disorder affecting the way the brain processes sounds. Individuals with APD usually have normal structure and function of the outer, middle, and inner ear. However, they cannot process the information they hear in the same way as others do, which leads to difficulties in recognizing and interpreting sounds, especially the sounds composing speech. It is thought that these difficulties arise from dysfunction in the central nervous system.

<span class="mw-page-title-main">Cortical deafness</span> Medical condition

Cortical deafness is a rare form of sensorineural hearing loss caused by damage to the primary auditory cortex. Cortical deafness is an auditory disorder where the patient is unable to hear sounds but has no apparent damage to the structures of the ear. It has been argued to be as the combination of auditory verbal agnosia and auditory agnosia. Patients with cortical deafness cannot hear any sounds, that is, they are not aware of sounds including non-speech, voices, and speech sounds. Although patients appear and feel completely deaf, they can still exhibit some reflex responses such as turning their head towards a loud sound.

Auditory agnosia is a form of agnosia that manifests itself primarily in the inability to recognize or differentiate between sounds. It is not a defect of the ear or "hearing", but rather a neurological inability of the brain to process sound meaning. While auditory agnosia impairs the understanding of sounds, other abilities such as reading, writing, and speaking are not hindered. It is caused by bilateral damage to the anterior superior temporal gyrus, which is part of the auditory pathway responsible for sound recognition, the auditory "what" pathway.

<span class="mw-page-title-main">Superior temporal sulcus</span> Part of the brains temporal lobe

The superior temporal sulcus (STS) is the sulcus separating the superior temporal gyrus from the middle temporal gyrus in the temporal lobe of the brain. A sulcus is a deep groove that curves into the largest part of the brain, the cerebrum, and a gyrus is a ridge that curves outward of the cerebrum.

The neuroscience of music is the scientific study of brain-based mechanisms involved in the cognitive processes underlying music. These behaviours include music listening, performing, composing, reading, writing, and ancillary activities. It also is increasingly concerned with the brain basis for musical aesthetics and musical emotion. Scientists working in this field may have training in cognitive neuroscience, neurology, neuroanatomy, psychology, music theory, computer science, and other relevant fields.

Neuroscientists have learned much about the role of the brain in numerous cognitive mechanisms by understanding corresponding disorders. Similarly, neuroscientists have come to learn much about music cognition by studying music-specific disorders. Even though music is most often viewed from a "historical perspective rather than a biological one" music has significantly gained the attention of neuroscientists all around the world. For many centuries music has been strongly associated with art and culture. The reason for this increased interest in music is because it "provides a tool to study numerous aspects of neuroscience, from motor skill learning to emotion".

Phonagnosia is a type of agnosia, or loss of knowledge, that involves a disturbance in the recognition of familiar voices and the impairment of voice discrimination abilities in which the affected individual does not suffer from comprehension deficits. Phonagnosia is an auditory agnosia, an acquired auditory processing disorder resulting from brain damage, other auditory agnosias include cortical deafness and auditory verbal agnosia also known as pure word deafness.

Change deafness is a perceptual phenomenon that occurs when, under certain circumstances, a physical change in an auditory stimulus goes unnoticed by the listener. There is uncertainty regarding the mechanisms by which changes to auditory stimuli go undetected, though scientific research has been done to determine the levels of processing at which these consciously undetected auditory changes are actually encoded. An understanding of the mechanisms underlying change deafness could offer insight on issues such as the completeness of our representation of the auditory environment, the limitations of the auditory perceptual system, and the relationship between the auditory system and memory. The phenomenon of change deafness is thought to be related to the interactions between high and low level processes that produce conscious experiences of auditory soundscapes.

Beat deafness is a form of congenital amusia characterized by a person's inability to distinguish musical rhythm or move in time to it.

Spatial hearing loss refers to a form of deafness that is an inability to use spatial cues about where a sound originates from in space. Poor sound localization in turn affects the ability to understand speech in the presence of background noise.

The temporal dynamics of music and language describes how the brain coordinates its different regions to process musical and vocal sounds. Both music and language feature rhythmic and melodic structure. Both employ a finite set of basic elements that are combined in ordered ways to create complete musical or lingual ideas.

The neuroscience of rhythm refers to the various forms of rhythm generated by the central nervous system (CNS). Nerve cells, also known as neurons in the human brain are capable of firing in specific patterns which cause oscillations. The brain possesses many different types of oscillators with different periods. Oscillators are simultaneously outputting frequencies from .02 Hz to 600 Hz. It is now well known that a computer is capable of running thousands of processes with just one high-frequency clock. Humans have many different clocks as a result of evolution. Prior organisms had no need for a fast-responding oscillator. This multi-clock system permits quick response to constantly changing sensory input while still maintaining the autonomic processes that sustain life. This method modulates and controls a great deal of bodily functions.

<span class="mw-page-title-main">Verbal intelligence</span>

Verbal intelligence is the ability to understand and reason using concepts framed in words. More broadly, it is linked to problem solving, abstract reasoning, and working memory. Verbal intelligence is one of the most g-loaded abilities.

References

  1. 1 2 3 4 Wilson, Sarah J; Pressing, Jeffrey L; Wales, Roger J (2002). "Modelling rhythmic function in a musician post-stroke". Neuropsychologia. 40 (8): 1494–505. CiteSeerX   10.1.1.511.1384 . doi:10.1016/S0028-3932(01)00198-1. PMID   11931954. S2CID   16730354.
  2. 1 2 Lampen, Jennifer; Jones, Katherine; McAuley, J. Devin; Chang, Soo-Eun; Wade, Juli; Cooper, Brenton G. (26 September 2014). "Arrhythmic Song Exposure Increases ZENK Expression in Auditory Cortical Areas and Nucleus Taeniae of the Adult Zebra Finch". PLOS ONE. 9 (9): e108841. Bibcode:2014PLoSO...9j8841L. doi: 10.1371/journal.pone.0108841 . PMC   4178233 . PMID   25259620.
  3. 1 2 Jun, M.D., Passion (March 7, 2011). "Music, Rhythm and the Brain". Brain World. Brain World. Retrieved February 18, 2015.
  4. 1 2 3 "Can't feel the rhythm? You may be 'beat-deaf'". The Body Odd. NBC News. Mar 15, 2011. Retrieved February 19, 2015.
  5. 1 2 Porges, Stephen W.; Macellaio, Matthew; Stanfill, Shannon D.; McCue, Kimberly; Lewis, Gregory F.; Harden, Emily R.; Handelman, Mika; Denver, John; Bazhenova, Olga V. (November 29, 2012). "Respiratory sinus arrhythmia and auditory processing in autism: Modifiable deficits of an integrated social engagement system?". Psychophysiology of Relationships. 88 (3): 261–70. doi:10.1016/j.ijpsycho.2012.11.009. PMC   3610863 . PMID   23201146.
  6. Philip, Abby (November 12, 2014). "Why some people just can't dance or clap to the beat". The Washington Post. Retrieved February 21, 2015.