Secondary contact

Last updated
The four outcomes of secondary contact:
1. An extrinsic barrier separates a species population into two but they come into contact before reproductive isolation is sufficient to result in speciation. The two populations fuse back into one species
2. Speciation by reinforcement
3. Two separated populations stay genetically distinct while hybrid swarms form in the zone of contact
4. Genome recombination results in speciation of the two populations, with an additional hybrid species. All three species are separated by intrinsic reproductive barriers Consequences of secondary contact Schematic.svg
The four outcomes of secondary contact:
1. An extrinsic barrier separates a species population into two but they come into contact before reproductive isolation is sufficient to result in speciation. The two populations fuse back into one species
2. Speciation by reinforcement
3. Two separated populations stay genetically distinct while hybrid swarms form in the zone of contact
4. Genome recombination results in speciation of the two populations, with an additional hybrid species. All three species are separated by intrinsic reproductive barriers

Secondary contact is the process in which two allopatricaly distributed populations of a species are geographically reunited. This contact allows for the potential for the exchange of genes, dependent on how reproductively isolated the two populations have become. There are several primary outcomes of secondary contact: extinction of one species, fusion of the two populations back into one, reinforcement, the formation of a hybrid zone, and the formation of a new species through hybrid speciation. [1]

Contents

Extinction

One of the two populations may go extinct due to competitive exclusion after secondary contact. This tends to happen when the two populations have strong reproductive isolation and significant overlap in their niche. A possible way to prevent extinction is if there is an advantage to being rare. For example, sexual imprinting and male-male competition may prevent extinction. [2]

The population that goes extinct may leave behind some of its genes in the surviving population if they hybridize. For example, the secondary contact between Homo sapiens and Neanderthals, as well as the Denisovans, left traces of their genes in modern human. However, if hybridization is so common that the resulting population received significant amount of genetic contribution from both populations, the result should be considered a fusion.

Fusion

The two populations may fuse back into one population. This tends to occur when there is little to no reproductive isolation between the two. During the process of fusion a hybrid zone may occur. This is sometimes called introgressive hybridization or reverse speciation. Concerns have been raised that the homogenizing of the environment may contribute to more and more fusion, leading to the loss of biodiversity. [3]

Hybrid zones

A hybrid zone may appear during secondary contact, meaning there would be an area where the two populations cohabitate and produce hybrids, often arranged in a cline. The width of the zone may vary from tens of meters to several hundred kilometers. A hybrid zone may be stable, or it may not. Some shift in one direction, which may eventually lead to the extinction of the receding population. Some expand over time until the two populations fuse. [4]

Reinforcement may occur in hybrid zones.

Hybrid zones are important study systems for speciation. [4]

Reinforcement

Reinforcement is the evolution towards increased reproductive isolation due to selection against hybridization. This occurs when the populations already have some reproductive isolation, but still hybridize to some extent. Because hybridization is costly (e.g. giving birth and raising a weak offspring), natural selection favors strong isolation mechanisms that can avoid such outcome, such as assortative mating. [5] Evidence for speciation by reinforcement has been accumulating since the 1990s.

Hybrid speciation

Occasionally, the hybrids may be able to survive and reproduce, but not backcross with either of the two parental lineages, thus becoming a new species. This often occur in plants through polyploidy, including in many important food crops. [6]

Occasionally, the hybrids may lead to the extinction of one or both parental lineages.

Related Research Articles

Speciation Evolutionary process by which populations evolve to become distinct species

Speciation is the evolutionary process by which populations evolve to become distinct species. The biologist Orator F. Cook coined the term in 1906 for cladogenesis, the splitting of lineages, as opposed to anagenesis, phyletic evolution within lineages. Charles Darwin was the first to describe the role of natural selection in speciation in his 1859 book On the Origin of Species. He also identified sexual selection as a likely mechanism, but found it problematic.

Hybrid (biology) offspring of cross-species reproduction

In biology, a hybrid is the offspring resulting from combining the qualities of two organisms of different breeds, varieties, species or genera through sexual reproduction. Hybrids are not always intermediates between their parents, but can show hybrid vigour, sometimes growing larger or taller than either parent. The concept of a hybrid is interpreted differently in animal and plant breeding, where there is interest in the individual parentage. In genetics, attention is focused on the numbers of chromosomes. In taxonomy, a key question is how closely related the parent species are.

Gene flow The transfer of genetic variation from one population to another

In population genetics, gene flow is the transfer of genetic variation from one population to another. If the rate of gene flow is high enough, then two populations are considered to have equivalent allele frequencies and therefore effectively be a single population. It has been shown that it takes only "One migrant per generation" to prevent populations from diverging due to drift. Gene flow is an important mechanism for transferring genetic diversity among populations. Migrants change the distribution of genetic diversity within the populations, by modifying the allele frequencies. High rates of gene flow can reduce the genetic differentiation between the two groups, increasing homogeneity. For this reason, gene flow has been thought to constrain speciation by combining the gene pools of the groups, thus preventing the development of differences in genetic variation that would have led to full speciation. In some cases migration may also result in the addition of novel genetic variants to the gene pool of a species or population.

Allopatric speciation Speciation that occurs between geographically isolated populations

Allopatric speciation, also referred to as geographic speciation, vicariant speciation, or its earlier name, the dumbbell model, is a mode of speciation that occurs when biological populations become geographically isolated from each other to an extent that prevents or interferes with gene flow.

Sympatric speciation A process through which new species evolve from a single ancestral species while inhabiting the same geographic region

Sympatric speciation is the evolution of a new species from a surviving ancestral species while both continue to inhabit the same geographic region. In evolutionary biology and biogeography, sympatric and sympatry are terms referring to organisms whose ranges overlap so that they occur together at least in some places. If these organisms are closely related, such a distribution may be the result of sympatric speciation. Etymologically, sympatry is derived from the Greek roots συν ("together") and πατρίς ("homeland"). The term was coined by Edward Bagnall Poulton in 1904, who explains the derivation.

Sympatry existence of two species within the same geographic region

In biology, two related species or populations are considered sympatric when they exist in the same geographic area and thus frequently encounter one another. An initially interbreeding population that splits into two or more distinct species sharing a common range exemplifies sympatric speciation. Such speciation may be a product of reproductive isolation – which prevents hybrid offspring from being viable or able to reproduce, thereby reducing gene flow – that results in genetic divergence. Sympatric speciation does not imply secondary contact, which is speciation or divergence in allopatry followed by range expansions leading to an area of sympatry. Sympatric species or taxa in secondary contact may or may not interbreed.

Disruptive selection

Disruptive selection, also called diversifying selection, describes changes in population genetics in which extreme values for a trait are favored over intermediate values. In this case, the variance of the trait increases and the population is divided into two distinct groups. In this more individuals acquire peripheral character value at both ends of the distribution curve.

Parapatric speciation Speciation within a population where subpopulations are reproductively isolated

In parapatric speciation, two subpopulations of a species evolve reproductive isolation from one another while continuing to exchange genes. This mode of speciation has three distinguishing characteristics: 1) mating occurs non-randomly, 2) gene flow occurs unequally, and 3) populations exist in either continuous or discontinuous geographic ranges. This distribution pattern may be the result of unequal dispersal, incomplete geographical barriers, or divergent expressions of behavior, among other things. Parapatric speciation predicts that hybrid zones will often exist at the junction between the two populations.

A hybrid zone exists where the ranges of two interbreeding species or diverged intraspecific lineages meet and cross-fertilize. Hybrid zones can form in situ due to the evolution of a new lineage but generally they result from secondary contact of the parental forms after a period of geographic isolation, which allowed their differentiation. Hybrid zones are useful in studying the genetics of speciation as they can provide natural examples of differentiation and (sometimes) gene flow between populations that are at some point between representing a single species and representing multiple species in reproductive isolation.

The mechanisms of reproductive isolation are a collection of evolutionary mechanisms, behaviors and physiological processes critical for speciation. They prevent members of different species from producing offspring, or ensure that any offspring are sterile. These barriers maintain the integrity of a species by reducing gene flow between related species.

In biology, a cline is a measurable gradient in a single character of a species across its geographical range. First coined by Julian Huxley in 1938, the “character” of the cline referred to is usually genetic, or phenotypic. Clines can show smooth, continuous gradation in a character, or they may show more abrupt changes in the trait from one geographic region to the next.

Hybrid speciation Form of speciation involving hybridization between two different species

Hybrid speciation is a form of speciation where hybridization between two different species leads to a new species, reproductively isolated from the parent species. Previously, reproductive isolation between hybrids and their parents was thought to be particularly difficult to achieve, and thus hybrid species were thought to be extremely rare. With DNA analysis becoming more accessible in the 1990s, hybrid speciation has been shown to be a fairly common phenomenon, particularly in plants. In botanical nomenclature, a hybrid species is also called a nothospecies. Hybrid species are by their nature polyphyletic.

<i>Heliconius</i> Genus of brush-footed butterflies

Heliconius comprises a colorful and widespread genus of brush-footed butterflies commonly known as the longwings or heliconians. This genus is distributed throughout the tropical and subtropical regions of the New World, from South America as far north as the southern United States. The larvae of these butterflies eat passion flower vines (Passifloraceae). Adults exhibit bright wing color patterns which signal their distastefulness to potential predators.

Hybrid swarm

A hybrid swarm is a population of hybrids that has survived beyond the initial hybrid generation, with interbreeding between hybrid individuals and backcrossing with its parent types. Such population are highly variable, with the genetic and phenotypic characteristics of individuals ranging widely between the two parent types. Hybrid swarms thus blur the boundary between the parent taxa. Precise definitions of which populations can be classified as hybrid swarms vary, with some specifying simply that all members of a population should be hybrids, while others differ in whether all members should have the same or different levels of hybridization.

Hybrizyme is a term coined to indicate novel or normally rare gene variants that are associated with hybrid zones, geographic areas where two related taxa meet, mate, and produce hybrid offspring. The hybrizyme phenomenon is widespread and these alleles occur commonly, if not in all hybrid zones. Initially considered to be caused by elevated rates of mutation in hybrids, the most probable hypothesis infers that they are the result of negative (purifying) selection. Namely, in the center of the hybrid zone, negative selection purges alleles against hybrid disadvantage. Stated differently, any allele that will decrease reproductive isolation is favored and any linked alleles also increase their frequency by genetic hitchhiking. If the linked alleles used to be rare variants in the parental taxa, they will become more common in the area where the hybrids are formed.

Reinforcement (speciation) process of speciation where natural selection increases the reproductive isolation between two populations of species

Reinforcement is a process of speciation where natural selection increases the reproductive isolation between two populations of species. This occurs as a result of selection acting against the production of hybrid individuals of low fitness. The idea was originally developed by Alfred Russel Wallace and is sometimes referred to as the Wallace effect. The modern concept of reinforcement originates from Theodosius Dobzhansky. He envisioned a species separated allopatrically, where during secondary contact the two populations mate, producing hybrids with lower fitness. Natural selection results from the hybrid's inability to produce viable offspring; thus members of one species who do not mate with members of the other have greater reproductive success. This favors the evolution of greater prezygotic isolation. Reinforcement is one of the few cases in which selection can favor an increase in prezygotic isolation, influencing the process of speciation directly. This aspect has been particularly appealing among evolutionary biologists.

History of speciation Wikimedia history article

The scientific study of speciation — how species evolve to become new species — began around the time of Charles Darwin in the middle of the 19th century. Many naturalists at the time recognized the relationship between biogeography and the evolution of species. The 20th century saw the growth of the field of speciation, with major contributors such as Ernst Mayr researching and documenting species' geographic patterns and relationships. The field grew in prominence with the modern evolutionary synthesis in the early part of that century. Since then, research on speciation has expanded immensely.

Evidence for speciation by reinforcement

Reinforcement is a process within speciation where natural selection increases the reproductive isolation between two populations of species by reducing the production of hybrids. Evidence for speciation by reinforcement has been gathered since the 1990s, and along with data from comparative studies and laboratory experiments, has overcome many of the objections to the theory. Differences in behavior or biology that inhibit formation of hybrid zygotes are termed prezygotic isolation. Reinforcement can be shown to be occurring by measuring the strength of prezygotic isolation in a sympatric population in comparison to an allopatric population of the same species. Comparative studies of this allow for determining large-scale patterns in nature across various taxa. Mating patterns in hybrid zones can also be used to detect reinforcement. Reproductive character displacement is seen as a result of reinforcement, so many of the cases in nature express this pattern in sympatry. Reinforcement's prevalence is unknown, but the patterns of reproductive character displacement are found across numerous taxa, and is considered to be a common occurrence in nature. Studies of reinforcement in nature often prove difficult, as alternative explanations for the detected patterns can be asserted. Nevertheless, empirical evidence exists for reinforcement occurring across various taxa and its role in precipitating speciation is conclusive.

Eukaryote hybrid genomes result from interspecific hybridization, where closely related species mate and produce offspring with admixed genomes. The advent of large-scale genomic sequencing has shown that hybridization is common, and that it may represent an important source of novel variation. Although most interspecific hybrids are sterile or less fit than their parents, some may survive and reproduce, enabling the transfer of adaptive variants across the species boundary, and even result in the formation of novel evolutionary lineages. There are two main variants of hybrid species genomes: allopolyploid, which have one full chromosome set from each parent species, and homoploid, which are a mosaic of the parent species genomes with no increase in chromosome number. The establishment of hybrid species requires the development of reproductive isolation against parental species. Allopolyploid species often have strong intrinsic reproductive barriers due to differences in chromosome number, and homoploid hybrids can become reproductively isolated from the parent species through assortment of genetic incompatibilities. However, both types of hybrids can become further reproductively isolated, gaining extrinsic isolation barriers, by exploiting novel ecological niches, relative to their parents. Hybrids represent the merging of divergent genomes and thus face problems arising from incompatible combinations of genes. Thus hybrid genomes are highly dynamic and may undergo rapid evolutionary change, including genome stabilization in which selection against incompatible combinations results in fixation of compatible ancestry block combinations within the hybrid species. The potential for rapid adaptation or speciation makes hybrid genomes a particularly exciting subject of in evolutionary biology. The article summarizes how introgressed alleles or hybrid species can establish and how the resulting hybrid genomes evolve.

References

  1. 1 2 John A. Hvala and Troy E. Wood (2012). "Speciation: Introduction". eLS. doi:10.1002/9780470015902.a0001709.pub3. ISBN   978-0470016176.Missing or empty |title= (help)
  2. Yang, Y., Servedio, M. R., & Richards-Zawacki, C. L. (2019). Imprinting sets the stage for speciation. Nature, 574(7776), 99-102.
  3. Seehausen, O. (2006). Conservation: losing biodiversity by reverse speciation. Current Biology, 16(9), R334-R337.
  4. 1 2 N. H. Barton & G. M. Hewitt (1985). "Analysis of hybrid zones". Annual Review of Ecology and Systematics . 16: 113–148. doi:10.1146/annurev.es.16.110185.000553.
  5. Kirkpatrick, M. (2000). Reinforcement and divergence under assortative mating. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267(1453), 1649-1655.
  6. Otto, S.; Witton, P. J. (2000). "Polyploid incidence and evolution" (PDF). Annual Review of Genetics. 34: 401–437. CiteSeerX   10.1.1.323.1059 . doi:10.1146/annurev.genet.34.1.401. PMID   11092833.