Chronospecies

Last updated
In palaeontology, the evidence for species and evolution comes mainly from the comparative anatomy of fossils. A chronospecies is defined in a single lineage (solid line) whose morphology changes with time. At some point, palaeontologists judge that enough change has occurred that two forms (A and B), separated in time and anatomy, once existed. If only sporadic examples of each survive in the fossil record, the forms will appear sharply distinct. Chronospecies.svg
In palaeontology, the evidence for species and evolution comes mainly from the comparative anatomy of fossils. A chronospecies is defined in a single lineage (solid line) whose morphology changes with time. At some point, palaeontologists judge that enough change has occurred that two forms (A and B), separated in time and anatomy, once existed. If only sporadic examples of each survive in the fossil record, the forms will appear sharply distinct.

A chronospecies is a species derived from a sequential development pattern that involves continual and uniform changes from an extinct ancestral form on an evolutionary scale. The sequence of alterations eventually produces a population that is physically, morphologically, and/or genetically distinct from the original ancestors. Throughout the change, there is only one species in the lineage at any point in time, as opposed to cases where divergent evolution produces contemporary species with a common ancestor. The related term paleospecies (or palaeospecies) indicates an extinct species only identified with fossil material. That identification relies on distinct similarities between the earlier fossil specimens and some proposed descendant although the exact relationship to the later species is not always defined. In particular, the range of variation within all the early fossil specimens does not exceed the observed range that exists in the later species.

Contents

A paleosubspecies (or palaeosubspecies) identifies an extinct subspecies that evolved into the currently-existing form. The connection with relatively-recent variations, usually from the Late Pleistocene, often relies on the additional information available in subfossil material. Most of the current species have changed in size and so adapted to the climatic changes during the last ice age (see Bergmann's Rule).

The further identification of fossil specimens as part of a "chronospecies" relies on additional similarities that more strongly indicate a specific relationship with a known species. For example, [1] relatively recent specimens, hundreds of thousands to a few million years old with consistent variations (such as always smaller but with the same proportions) as a living species might represent the final step in a chronospecies. The possible identification of the immediate ancestor of the living taxon may also rely on stratigraphic information to establish the age of the specimens.

The concept of chronospecies is related to the phyletic gradualism model of evolution, and it also relies on an extensive fossil record since morphological changes accumulate over time, and two very different organisms could be connected by a series of intermediaries.

Examples

See also

Related Research Articles

<i>Ardipithecus</i> Extinct genus of hominins

Ardipithecus is a genus of an extinct hominine that lived during the Late Miocene and Early Pliocene epochs in the Afar Depression, Ethiopia. Originally described as one of the earliest ancestors of humans after they diverged from the chimpanzees, the relation of this genus to human ancestors and whether it is a hominin is now a matter of debate. Two fossil species are described in the literature: A. ramidus, which lived about 4.4 million years ago during the early Pliocene, and A. kadabba, dated to approximately 5.6 million years ago. Initial behavioral analysis indicated that Ardipithecus could be very similar to chimpanzees, however more recent analysis based on canine size and lack of canine sexual dimorphism indicates that Ardipithecus was characterised by reduced aggression, and that they more closely resemble bonobos.

Phylogenetic tree Branching diagram of evolutionary relationships between organisms

A phylogenetic tree is a branching diagram or a tree showing the evolutionary relationships among various biological species or other entities based upon similarities and differences in their physical or genetic characteristics. All life on Earth is part of a single phylogenetic tree, indicating common ancestry.

<i>Homo rudolfensis</i> Extinct hominin from the Early Pleistocene of East Africa

Homo rudolfensis is an extinct species of archaic human from the Early Pleistocene of East Africa about 2 million years ago (mya). Because H. rudolfensis coexisted with several other hominins, it is debated what specimens can be confidently assigned to this species beyond the lectotype skull KNM-ER 1470 and other partial skull aspects. No bodily remains are definitively assigned to H. rudolfensis. Consequently, both its generic classification and validity are debated without any wide consensus, with some recommending the species to actually belong to the genus Australopithecus as A. rudolfensis or Kenyanthropus as K. rudolfensis, or that it is synonymous with the contemporaneous and anatomically similar H. habilis.

Living fossil Organism resembling a form long shown in the fossil record

A living fossil is an extant taxon that cosmetically resembles related species known only from the fossil record. To be considered a living fossil, the fossil species must be old relative to the time of origin of the extant clade. Living fossils commonly are of species-poor lineages, but they need not be. While the body plan of a living fossil remains superficially similar, it is never the same species as the remote relatives it resembles, because genetic drift would inevitably change its chromosomal structure.

Herto Man Number of early modern human fossils found in Herto Bouri, Ethiopia

Herto Man refers to the 154,000 - 160,000-year-old human remains discovered in 1997 from the Upper Herto member of the Bouri Formation in the Afar Triangle, Ethiopia. The discovery of Herto Man was especially significant at the time, as it fell within a long gap in the fossil record between 300 and 100 thousand years ago, and at its description in 2003, it represented the oldest dated H. sapiens remains. In the original description paper, these 12 individuals were described as falling just outside the umbrella of "anatomically modern human". Thus, Herto Man was classified into a new subspecies as "H. s. idaltu". It supposedly represented a transitional morph between the more archaic "H. (s.?) rhodesiensis and H. s. sapiens. Subsequent researchers have rejected this classification. The validity of such subspecies is difficult to justify because of the vague definitions of "species" and "subspecies", especially when discussing a chronospecies, as the exact end-morphology and start-morphology of the ancestor and descendant species are inherently unresolvable.

Anagenesis is the gradual evolution of a species that continues to exist as an interbreeding population. This contrasts with cladogenesis, which occurs when there is branching or splitting, leading to two or more lineages and resulting in separate species. Anagenesis does not always lead to the formation of a new species from an ancestral species. When speciation does occur as different lineages branch off and cease to interbreed, a core group may continue to be defined as the original species. The evolution of this group, without extinction or species selection, is anagenesis.

Parallel evolution is the similar development of a trait in distinct species that are not closely related, but share a similar original trait in response to similar evolutionary pressure.

<i>Australopithecus anamensis</i> Extinct hominin from Pliocene east Africa

Australopithecus anamensis is a hominin species that lived approximately between 4.2 and 3.8 million years ago and is the oldest known Australopithecus species, living during the Plio-Pleistocene era.

Computational phylogenetics is the application of computational algorithms, methods, and programs to phylogenetic analyses. The goal is to assemble a phylogenetic tree representing a hypothesis about the evolutionary ancestry of a set of genes, species, or other taxa. For example, these techniques have been used to explore the family tree of hominid species and the relationships between specific genes shared by many types of organisms.

<i>Squalodon</i> Extinct genus of mammals

Squalodon is an extinct genus of whales of the Oligocene and Miocene epochs, belonging to the family Squalodontidae. Named by Jean-Pierre Sylvestre de Grateloup in 1840, it was originally believed to be an iguanodontid dinosaur but has since been reclassified. The name Squalodon comes from Squalus, a genus of shark. As a result, its name means "shark tooth". Its closest modern relative is the South Asian river dolphin.

Introduction to evolution Non-technical overview of the subject of biological evolution

Evolution is the process of change in all forms of life over generations, and evolutionary biology is the study of how evolution occurs. Biological populations evolve through genetic changes that correspond to changes in the organisms' observable traits. Genetic changes include mutations, which are caused by damage or replication errors in organisms' DNA. As the genetic variation of a population drifts randomly over generations, natural selection gradually leads traits to become more or less common based on the relative reproductive success of organisms with those traits.

Rimasuchus is an extinct genus of crocodile from the Miocene of Egypt and possibly Libya. Only one species - Rimasuchus lloydi - is currently known. It was previously thought to be a species of Crocodylus, but is now thought to be more closely related to the modern African dwarf crocodiles (Osteolaemus).

Domesticated species and the human populations that domesticate them are typified by a mutualistic relationship of interdependence, in which humans have over thousands of years modified the genomics of domesticated species. Genomics is the study of the structure, content, and evolution of genomes, or the entire genetic information of organisms. Domestication is the process by which humans alter the morphology and genes of targeted organisms by selecting for desirable traits. These genomic changes produce the domestication syndromes.

<i>Graecopithecus</i> Extinct hominid from Miocene Greece

Graecopithecus is an extinct species, possibly belonging to the hominids, that lived in southeast Europe during the late Miocene around 7.2 million years ago. Originally identified by a single lower jaw bone bearing a molar tooth found in Pyrgos Vasilissis, Athens, Greece, in 1944, other tooth specimens were discovered from Azmaka quarry in Bulgaria in 2012. With only little and badly preserved materials to reveal its nature, it is considered as "the most poorly known European Miocene hominoids." The creature was popularly nicknamed 'El Graeco' by scientists.

Outline of evolution Hierarchical outline list of articles related to evolution

The following outline is provided as an overview of and topical guide to evolution:

<i>Cosmopolitodus</i> Extinct mackerel shark

Cosmopolitodus is an extinct genus of mackerel shark that lived between thirty to one million years ago during the late Oligocene to the Early Pleistocene epochs. Its type species is Cosmopolitodus hastalis, the broad-tooth mako. In 2021, Isurus planus was reassigned to the genus, and thus became the second species C. planus. Its teeth can reach lengths up to 3.5 in (7.5 cm) and are found worldwide. It is believed to be an ancestor to the great white shark, an argument supported by the transitional species Carcharodon hubbelli, but as of 2021, no phylogenetic analyses have been done for proof.

Evolution of the wolf

The evolution of the wolf occurred over a geologic time scale of at least 300 thousand years. The grey wolf Canis lupus is a highly adaptable species that is able to exist in a range of environments and which possesses a wide distribution across the Holarctic. Studies of modern grey wolves have identified distinct sub-populations that live in close proximity to each other. This variation in sub-populations is closely linked to differences in habitat – precipitation, temperature, vegetation, and prey specialization – which affect cranio-dental plasticity.

<i>Canis arnensis</i> Extinct species of carnivore

Canis arnensis, the Arno River dog, is an extinct species of canine that was endemic to Mediterranean Europe during the Early Pleistocene. The Arno River dog has been described as a small jackal-like dog. Its anatomy and morphology relate it more to the modern golden jackal than to the larger Etruscan wolf of that time. It is probably the ancestor of modern jackals.

This glossary of evolutionary biology is a list of definitions of terms and concepts used in the study of evolutionary biology, population biology, speciation, and phylogenetics, as well as sub-disciplines and related fields. For additional terms from related glossaries, see Glossary of genetics, Glossary of ecology, and Glossary of biology.

<i>Homo bodoensis</i> Extinct species of the genus Homo

Homo bodoensis is the species name for extinct archaic humans that lived during the Chibanian in Africa. It relies on the fossil specimen known as Bodo cranium, which was discovered in 1976 from the Awash River in Ethiopia and is estimated to have lived around 500,000 years ago. Following the comparative analysis of the fossil with those of other Homo falling on the same geological age, the name was formally introduced in 2021.

References

  1. Howard, Hildegarde (1947). "An ancestral Golden Eagle raises a question in taxonomy" (PDF). The Auk . 64 (2): 287–291. doi:10.2307/4080550. JSTOR   4080550.

Further reading