Parallel speciation

Last updated

In biology, parallel speciation is a type of speciation where there is repeated evolution of reproductively isolating traits via the same mechanisms occurring between separate yet closely related species inhabiting different environments. [1] [2] [3] [4] This leads to a circumstance where independently evolved lineages have developed reproductive isolation from their ancestral lineage, but not from other independent lineages that inhabit similar environments. [1] In order for parallel speciation to be confirmed, there is a set of three requirements that has been established that must be met: there must be phylogenetic independence between the separate populations inhabiting similar environments to ensure that the traits responsible for reproductive isolation evolved separately, there must be reproductive isolation not only between the ancestral population and the descendent population, but also between descendent populations that inhabit dissimilar environments, and descendent populations that inhabit similar environments must not be reproductively isolated from one another. [1] To determine if natural selection specifically is the cause of parallel speciation, a fourth requirement has been established that includes identifying and testing an adaptive mechanism, which eliminates the possibility of a genetic factor such as polyploidy being the responsible agent. [1]

Contents

Parallel speciation vs. parallel evolution

Parallel evolution is a common phenomenon that occurs when separate yet closely related lineages evolve the same, non-ancestral trait as a result of inhabiting the same environment, and thus, facing the same selection pressures. [1] [2] [5] An example given of parallel evolution is the independent development of small body sizes in two or more descendent populations in a new, similar environment that diverged from the same ancestral population. [1] Parallel speciation differs from this slightly, as it is a form of parallel evolution, but the traits that are independently evolving in these differing lineages are those that are responsible for reproductive isolation. [1] [2] [3] [6] Using the previous example of independently evolved small body sizes, it changes from parallel evolution to parallel speciation when the descendent populations that have both evolved small body sizes due to their similar environments have become reproductively isolated from their ancestral population, but they are not reproductively isolated from one another. [1]

Problems in detecting parallel speciation

The required analysis of several variables, including genetic markers, morphology, and ecology of these independent populations, makes it hard to attribute speciation events specifically to parallel speciation. [4] Failing to address all three of these contributing factors could incorrectly attribute the event to some other form of speciation, when in fact, parallel speciation was the occurring process. It can also be difficult to assess due to populations of the same species that may have a small amount of gene flow occurring between them despite living in different areas, but do not have physical barriers to overcome. Without these physical barriers, gene flow cannot be considered insignificant, which can further conceal the evidence of parallel speciation taking place. [4]

Reported cases

However, identifying and demonstrating the cases of parallel speciation is not an easy task to perform because of the many challenges especially in-depth analysis have to be performed in multiple aspects like phylogenetics, ecology, phenotypes and specifically the recurrent formation of reproductive isolation between species. [7] [8] According to previous studies, there are four distinct criteria for a convincing example of parallel speciation;

  1. In similar environments the populations must have distinct phylogeny and the populations must share multiple origins of arise rather than from gene flow caused by secondary contact of allopatric populations.
  1. The descendent populations must be in reproductive isolation from ancestral populations.
  2. There must be no reproductive isolation in descendent populations.
  3. The evolution of shared characteristics in descendent populations must occur through natural selection. [1] [9]

Even though, there are multiple well characterized cases of parallel speciation for example sticklebacks, [2] [10] stick insects [7] [11] finches, [12] marine snails, [13] and cichlid fishes, [14] have been documented but in case of plants only a couple of cases have been reported. [15] [16] [17] [18] Although, the mechanisms and adaptive processes involved in parallel speciation are largely unknown. [2] [19]

Parallel speciation in plants

Parallel speciation is documented in animals multiple times. [4] although, in plants the parallel speciation cases are not much which suggest that plants are not prone towards the parallel speciation, but this also indicates that there are not enough empirical studies available which are based on rigorous evaluation and testing, like in the cases of animals. [15] [6]   A well characterized case of parallel speciation in wild rice has been demonstrated [9] in which all the four criteria of parallel speciation have been qualified. In this case cutting edge methods and tools like whole genome sequencing and sanger sequencing of populations samples were used. The verification of meeting the multiple origin of derived species criteria, was performed by phylogenetic analysis and ABC modelling. With this case of wild rice Oryza nivara from Oryza rufipogon and other reported case in plants [20] [21] [22] lays a foundation that the parallel speciation is not common in plant species. The reproduction isolation is most important criteria in parallel speciation, and it was achieved because of the flowering time difference across the wild species in the habitat and the examples of such premating isolation mechanism are reported previously. [9]  

Environmental conditions and abiotic stresses are one of the many reasons of parallel speciation in plant species. It is hypothesized that the plant species Oryza nivara is originated from Oryza rufipogon because of the ecological shift from prolonged damp to a seasonally dry habitat during the recent glaciations. [23] [24] [25]  The consistency of this hypothesis can be verified through estimated time of origin of Oryza nivara [26] and distribution modelling of species, suggesting that precipitation and temperature were the main climatic drivers of Oryza nivara distribution. Similarly, this hypothesis is supported by the fact that the annual grasses have been evolved (adapted) to the dry climate of monsoonal Asia. [27] Furthermore, the climatic stresses also interfere with the ecology, morphology, and physiology of plants for example the drought can affect the flowering time and pattern in plant species. Flowering time is heavily investigated in plant species and used as a tool to identify the drought escape in plants. Interestingly, early flowering helps plant species to avoid seasonal drought and results in increased fitness in shortened growing seasons. [28] Thus, the flowering is considered a “magic trait” [29] in plant species that help in adaptation and enables the reproductive isolation required for parallel speciation. The almost complete isolation in flowering time combined with the difference in mating system is making it a strong premating barrier to gene flow among the species and played a pivotal role in Oryza nivara origin. [30] [31]

Parallel speciation and natural selection

Natural selection plays a pivotal role in almost all the theories of speciation . Selection is one of the driving forces of genetic diversity among the allopatric populations which gave rise to reproductive isolation as incidental by-product. [1] [32] However, the laboratory-based experiments are supporting this argument, [33] but due to the inadequate evidence in nature it is unclear that how natural selection and environment plays their roles in the origination of reproductive isolation. Testing the role of natural selection in parallel speciation have focusing on the reinforcement of premating isolation. [2] But for the reinforcement, the requirement is preexisting reproductive isolation in the form of decreased hybrid fitness and is normally considered a final stride towards the process of speciation. [32] [34] Interestingly, the instances of repeated, parallel evolution in response to environmental stimuli presents the tiny bits of evidence of evolution by natural selection. The role of natural selection in the parallel speciation of stick insect populations has been reported. [11] Similarly other studies also suggest the similar results in which the role of natural selection have been indicated in the process of parallel speciation. [35]

Related Research Articles

<span class="mw-page-title-main">Evolution</span> Change in the heritable characteristics of biological populations

Evolution is the change in the heritable characteristics of biological populations over successive generations. Evolution occurs when evolutionary processes such as natural selection and genetic drift act on genetic variation, resulting in certain characteristics becoming more or less common within a population over successive generations. The process of evolution has given rise to biodiversity at every level of biological organisation.

Microevolution is the change in allele frequencies that occurs over time within a population. This change is due to four different processes: mutation, selection, gene flow and genetic drift. This change happens over a relatively short amount of time compared to the changes termed macroevolution.

Speciation is the evolutionary process by which populations evolve to become distinct species. The biologist Orator F. Cook coined the term in 1906 for cladogenesis, the splitting of lineages, as opposed to anagenesis, phyletic evolution within lineages. Charles Darwin was the first to describe the role of natural selection in speciation in his 1859 book On the Origin of Species. He also identified sexual selection as a likely mechanism, but found it problematic.

<span class="mw-page-title-main">Gene flow</span> Transfer of genetic variation from one population to another

In population genetics, gene flow is the transfer of genetic material from one population to another. If the rate of gene flow is high enough, then two populations will have equivalent allele frequencies and therefore can be considered a single effective population. It has been shown that it takes only "one migrant per generation" to prevent populations from diverging due to drift. Populations can diverge due to selection even when they are exchanging alleles, if the selection pressure is strong enough. Gene flow is an important mechanism for transferring genetic diversity among populations. Migrants change the distribution of genetic diversity among populations, by modifying allele frequencies. High rates of gene flow can reduce the genetic differentiation between the two groups, increasing homogeneity. For this reason, gene flow has been thought to constrain speciation and prevent range expansion by combining the gene pools of the groups, thus preventing the development of differences in genetic variation that would have led to differentiation and adaptation. In some cases dispersal resulting in gene flow may also result in the addition of novel genetic variants under positive selection to the gene pool of a species or population

Allopatric speciation – also referred to as geographic speciation, vicariant speciation, or its earlier name the dumbbell model – is a mode of speciation that occurs when biological populations become geographically isolated from each other to an extent that prevents or interferes with gene flow.

<span class="mw-page-title-main">Peripatric speciation</span> Speciation in which a new species is formed from an isolated smaller peripheral population

Peripatric speciation is a mode of speciation in which a new species is formed from an isolated peripheral population. Since peripatric speciation resembles allopatric speciation, in that populations are isolated and prevented from exchanging genes, it can often be difficult to distinguish between them. Nevertheless, the primary characteristic of peripatric speciation proposes that one of the populations is much smaller than the other. The terms peripatric and peripatry are often used in biogeography, referring to organisms whose ranges are closely adjacent but do not overlap, being separated where these organisms do not occur—for example on an oceanic island compared to the mainland. Such organisms are usually closely related ; their distribution being the result of peripatric speciation.

<span class="mw-page-title-main">Parapatric speciation</span> Speciation within a population where subpopulations are reproductively isolated

In parapatric speciation, two subpopulations of a species evolve reproductive isolation from one another while continuing to exchange genes. This mode of speciation has three distinguishing characteristics: 1) mating occurs non-randomly, 2) gene flow occurs unequally, and 3) populations exist in either continuous or discontinuous geographic ranges. This distribution pattern may be the result of unequal dispersal, incomplete geographical barriers, or divergent expressions of behavior, among other things. Parapatric speciation predicts that hybrid zones will often exist at the junction between the two populations.

The mechanisms of reproductive isolation are a collection of evolutionary mechanisms, behaviors and physiological processes critical for speciation. They prevent members of different species from producing offspring, or ensure that any offspring are sterile. These barriers maintain the integrity of a species by reducing gene flow between related species.

<span class="mw-page-title-main">Hybrid speciation</span> Form of speciation involving hybridization between two different species

Hybrid speciation is a form of speciation where hybridization between two different species leads to a new species, reproductively isolated from the parent species. Previously, reproductive isolation between two species and their parents was thought to be particularly difficult to achieve, and thus hybrid species were thought to be very rare. With DNA analysis becoming more accessible in the 1990s, hybrid speciation has been shown to be a somewhat common phenomenon, particularly in plants. In botanical nomenclature, a hybrid species is also called a nothospecies. Hybrid species are by their nature polyphyletic.

A genetic isolate is a population of organisms with little genetic mixing with other organisms within the same species due to geographic isolation or other factors that prevent reproduction. Genetic isolates form new species through an evolutionary process known as speciation. All modern species diversity is a product of genetic isolates and evolution.

<span class="mw-page-title-main">Ecological speciation</span>

Ecological speciation is a form of speciation arising from reproductive isolation that occurs due to an ecological factor that reduces or eliminates gene flow between two populations of a species. Ecological factors can include changes in the environmental conditions in which a species experiences, such as behavioral changes involving predation, predator avoidance, pollinator attraction, and foraging; as well as changes in mate choice due to sexual selection or communication systems. Ecologically-driven reproductive isolation under divergent natural selection leads to the formation of new species. This has been documented in many cases in nature and has been a major focus of research on speciation for the past few decades.

<span class="mw-page-title-main">Reinforcement (speciation)</span> Process of increasing reproductive isolation

Reinforcement is a process of speciation where natural selection increases the reproductive isolation between two populations of species. This occurs as a result of selection acting against the production of hybrid individuals of low fitness. The idea was originally developed by Alfred Russel Wallace and is sometimes referred to as the Wallace effect. The modern concept of reinforcement originates from Theodosius Dobzhansky. He envisioned a species separated allopatrically, where during secondary contact the two populations mate, producing hybrids with lower fitness. Natural selection results from the hybrid's inability to produce viable offspring; thus members of one species who do not mate with members of the other have greater reproductive success. This favors the evolution of greater prezygotic isolation. Reinforcement is one of the few cases in which selection can favor an increase in prezygotic isolation, influencing the process of speciation directly. This aspect has been particularly appealing among evolutionary biologists.

<span class="mw-page-title-main">History of speciation</span> Aspect of history

The scientific study of speciation — how species evolve to become new species — began around the time of Charles Darwin in the middle of the 19th century. Many naturalists at the time recognized the relationship between biogeography and the evolution of species. The 20th century saw the growth of the field of speciation, with major contributors such as Ernst Mayr researching and documenting species' geographic patterns and relationships. The field grew in prominence with the modern evolutionary synthesis in the early part of that century. Since then, research on speciation has expanded immensely.

<span class="mw-page-title-main">Evidence for speciation by reinforcement</span> Overview article

Reinforcement is a process within speciation where natural selection increases the reproductive isolation between two populations of species by reducing the production of hybrids. Evidence for speciation by reinforcement has been gathered since the 1990s, and along with data from comparative studies and laboratory experiments, has overcome many of the objections to the theory. Differences in behavior or biology that inhibit formation of hybrid zygotes are termed prezygotic isolation. Reinforcement can be shown to be occurring by measuring the strength of prezygotic isolation in a sympatric population in comparison to an allopatric population of the same species. Comparative studies of this allow for determining large-scale patterns in nature across various taxa. Mating patterns in hybrid zones can also be used to detect reinforcement. Reproductive character displacement is seen as a result of reinforcement, so many of the cases in nature express this pattern in sympatry. Reinforcement's prevalence is unknown, but the patterns of reproductive character displacement are found across numerous taxa, and is considered to be a common occurrence in nature. Studies of reinforcement in nature often prove difficult, as alternative explanations for the detected patterns can be asserted. Nevertheless, empirical evidence exists for reinforcement occurring across various taxa and its role in precipitating speciation is conclusive.

<span class="mw-page-title-main">Laboratory experiments of speciation</span> Biological experiments

Laboratory experiments of speciation have been conducted for all four modes of speciation: allopatric, peripatric, parapatric, and sympatric; and various other processes involving speciation: hybridization, reinforcement, founder effects, among others. Most of the experiments have been done on flies, in particular Drosophila fruit flies. However, more recent studies have tested yeasts, fungi, and even viruses.

Maria R. Servedio is a Canadian-American professor at the University of North Carolina at Chapel Hill. Her research spans a wide range of topics in evolutionary biology from sexual selection to evolution of behavior. She largely approaches these topics using mathematical models. Her current research interests include speciation and reinforcement, mate choice, and learning with a particular focus on evolutionary mechanisms that promote premating (prezygotic) isolation. Through integrative approaches and collaborations, she uses mathematical models along with experimental, genetic, and comparative techniques to draw conclusions on how evolution occurs. She has published extensively on these topics and has more than 50 peer-reviewed articles. She served as Vice President in 2018 of the American Society of Naturalists, and has been elected to serve as President in 2023.

<i>Drosophila silvestris</i> Species of fly

Drosophila silvestris is a large species of fly in the family Drosophilidae that are primarily black with yellow spots. As a rare species of fruit fly endemic to Hawaii, the fly often experiences reproductive isolation. Despite barriers in nature, D. silvestris is able to breed with D. heteroneura to create hybrid flies in the laboratory.

Eukaryote hybrid genomes result from interspecific hybridization, where closely related species mate and produce offspring with admixed genomes. The advent of large-scale genomic sequencing has shown that hybridization is common, and that it may represent an important source of novel variation. Although most interspecific hybrids are sterile or less fit than their parents, some may survive and reproduce, enabling the transfer of adaptive variants across the species boundary, and even result in the formation of novel evolutionary lineages. There are two main variants of hybrid species genomes: allopolyploid, which have one full chromosome set from each parent species, and homoploid, which are a mosaic of the parent species genomes with no increase in chromosome number.

Urban evolution refers to the heritable genetic changes of populations in response to urban development and anthropogenic activities in urban areas. Urban evolution can be caused by mutation, genetic drift, gene flow, or evolution by natural selection. Biologists have observed evolutionary change in numerous species compared to their rural counterparts on a relatively short timescale.

Allochronic speciation is a form of speciation arising from reproductive isolation that occurs due to a change in breeding time that reduces or eliminates gene flow between two populations of a species. The term allochrony is used to describe the general ecological phenomenon of the differences in phenology that arise between two or more species—speciation caused by allochrony is effectively allochronic speciation.

References

  1. 1 2 3 4 5 6 7 8 9 10 Schluter, Dolph; Nagel, Laura M. (1995). "Parallel Speciation by Natural Selection". The American Naturalist. 146 (2): 292–301. doi:10.1086/285799. ISSN   0003-0147. JSTOR   2463062. S2CID   84965667.
  2. 1 2 3 4 5 6 Rundle, Howard D.; Nagel, Laura; Boughman, Janette Wenrick; Schluter, Dolph (2000-01-14). "Natural Selection and Parallel Speciation in Sympatric Sticklebacks". Science. 287 (5451): 306–308. doi:10.1126/science.287.5451.306. ISSN   0036-8075. PMID   10634785.
  3. 1 2 Strecker, Ulrike; Hausdorf, Bernhard; Wilkens, Horst (2012-01-01). "Parallel speciation in Astyanax cave fish (Teleostei) in Northern Mexico". Molecular Phylogenetics and Evolution. 62 (1): 62–70. doi:10.1016/j.ympev.2011.09.005. ISSN   1055-7903. PMID   21963344.
  4. 1 2 3 4 Johannesson, Kerstin (2001-03-01). "Parallel speciation: a key to sympatric divergence". Trends in Ecology & Evolution. 16 (3): 148–153. doi:10.1016/S0169-5347(00)02078-4. ISSN   0169-5347. PMID   11179579.
  5. "Parallel Evolution - an overview | ScienceDirect Topics". www.sciencedirect.com. Retrieved 2022-11-28.
  6. 1 2 Ostevik, Katherine L.; Moyers, Brook T.; Owens, Gregory L.; Rieseberg, Loren H. (2012-04-10). "Parallel Ecological Speciation in Plants?". International Journal of Ecology. 2012: e939862. doi: 10.1155/2012/939862 . ISSN   1687-9708.
  7. 1 2 Nosil, Patrik (2012-03-15). Ecological Speciation. OUP Oxford. ISBN   978-0-19-958711-7.
  8. Rieseberg, Loren H.; Willis, John H. (2007-08-17). "Plant Speciation". Science. 317 (5840): 910–914. doi:10.1126/science.1137729. ISSN   0036-8075. PMC   2442920 . PMID   17702935.
  9. 1 2 3 Cai, Zhe Cai; Zhou, Lian; Ren, Ning-Ning; Xu, Xun; Liu, Rong; Huang, Lei; Zheng, Xiao-Ming; Meng, Qing-Lin; Du, Yu-Su (May 2019). "Parallel Speciation of Wild Rice Associated with Habitat Shifts". Molecular Biology and Evolution. pp. 875–889. doi:10.1093/molbev/msz029. PMC   6501882 . PMID   30861529 . Retrieved 2022-12-03.
  10. Colosimo, Pamela F.; Hosemann, Kim E.; Balabhadra, Sarita; Villarreal, Guadalupe; Dickson, Mark; Grimwood, Jane; Schmutz, Jeremy; Myers, Richard M.; Schluter, Dolph; Kingsley, David M. (2005-03-25). "Widespread Parallel Evolution in Sticklebacks by Repeated Fixation of Ectodysplasin Alleles". Science. 307 (5717): 1928–1933. doi:10.1126/science.1107239. ISSN   0036-8075. PMID   15790847. S2CID   1296135.
  11. 1 2 Soria-Carrasco, Víctor; Gompert, Zachariah; Comeault, Aaron A.; Farkas, Timothy E.; Parchman, Thomas L.; Johnston, J. Spencer; Buerkle, C. Alex; Feder, Jeffrey L.; Bast, Jens; Schwander, Tanja; Egan, Scott P.; Crespi, Bernard J.; Nosil, Patrik (2014-05-16). "Stick Insect Genomes Reveal Natural Selection's Role in Parallel Speciation". Science. 344 (6185): 738–742. doi:10.1126/science.1252136. ISSN   0036-8075. PMID   24833390. S2CID   27177081.
  12. Ryan, Peter G.; Bloomer, Paulette; Moloney, Coleen L.; Grant, Tyron J.; Delport, Wayne (2007-03-09). "Ecological Speciation in South Atlantic Island Finches". Science. 315 (5817): 1420–1423. doi:10.1126/science.1138829. ISSN   0036-8075. PMID   17347442. S2CID   36853345.
  13. Ravinet, Mark; Westram, Anja; Johannesson, Kerstin; Butlin, Roger; André, Carl; Panova, Marina (27 July 2015). "Shared and nonshared genomic divergence in parallel ecotypes of Littorina saxatilis at a local scale". Molecular Ecology. 25 (1): 287–305. doi:10.1111/mec.13332. PMID   26222268. S2CID   39707707.
  14. Elmer, Kathryn R.; Fan, Shaohua; Kusche, Henrik; Luise Spreitzer, Maria; Kautt, Andreas F.; Franchini, Paolo; Meyer, Axel (2014-10-27). "Parallel evolution of Nicaraguan crater lake cichlid fishes via non-parallel routes". Nature Communications. 5 (1): 5168. doi: 10.1038/ncomms6168 . ISSN   2041-1723. PMID   25346277.
  15. 1 2 Abbott, Richard J.; Comes, Hans Peter (2007). "Blowin' in the Wind: The Transition from Ecotype to Species". The New Phytologist. 175 (2): 197–200. doi:10.1111/j.1469-8137.2007.02127.x. ISSN   0028-646X. JSTOR   4641039. PMID   17587369.
  16. Roda, Federico; Ambrose, Luke; Walter, Gregory M.; Liu, Huanle L.; Schaul, Andrea; Lowe, Andrew; Pelser, Pieter B.; Prentis, Peter; Rieseberg, Loren H.; Ortiz-Barrientos, Daniel (June 2013). "Genomic evidence for the parallel evolution of coastal forms in the Senecio lautus complex". Molecular Ecology. 22 (11): 2941–2952. doi:10.1111/mec.12311. PMID   23710896. S2CID   25898940.
  17. Richards, Thomas J.; Walter, Greg M.; McGuigan, Katrina; Ortiz‐Barrientos, Daniel (September 2016). "Divergent natural selection drives the evolution of reproductive isolation in an Australian wildflower". Evolution. 70 (9): 1993–2003. doi:10.1111/evo.12994. ISSN   0014-3820. PMID   27352911. S2CID   30605635.
  18. Comes, Hans P.; Coleman, Max; Abbott, Richard J. (2017-07-04). "Recurrent origin of peripheral, coastal (sub)species in Mediterranean Senecio (Asteraceae)". Plant Ecology & Diversity. 10 (4): 253–271. doi: 10.1080/17550874.2017.1400127 . hdl: 10023/12337 . ISSN   1755-0874. S2CID   89697055.
  19. Schluter, Dolph (2009-02-06). "Evidence for Ecological Speciation and Its Alternative". Science. 323 (5915): 737–741. doi:10.1126/science.1160006. ISSN   0036-8075. PMID   19197053. S2CID   307207.
  20. Roda, Federico; Walter, Greg M.; Nipper, Rick; Ortiz‐Barrientos, Daniel (21 April 2017). "Genomic clustering of adaptive loci during parallel evolution of an Australian wildflower". Molecular Ecology. 26 (14): 3687–3699. doi: 10.1111/mec.14150 . ISSN   0962-1083. PMID   28429828. S2CID   9597407.
  21. Roda, Federico; Walter, Greg M.; Nipper, Rick; Ortiz‐Barrientos, Daniel (July 2017). "Genomic clustering of adaptive loci during parallel evolution of an Australian wildflower". Molecular Ecology. 26 (14): 3687–3699. doi: 10.1111/mec.14150 . ISSN   0962-1083. PMID   28429828. S2CID   9597407.
  22. Trucchi, Emiliano; Frajman, Božo; Haverkamp, Thomas H. A.; Schönswetter, Peter; Paun, Ovidiu (October 2017). "Genomic analyses suggest parallel ecological divergence in Heliosperma pusillum (Caryophyllaceae)". New Phytologist. 216 (1): 267–278. doi:10.1111/nph.14722. ISSN   0028-646X. PMC   5601199 . PMID   28782803.
  23. Barbier, Pascale (1989). "Genetic variation and ecotypic differentiation in the wild rice species Oryza rufipogon. I. Population differentiation in life-history traits and isozymic loci". 遺伝學雑誌. 64 (4): 259–271. doi: 10.1266/jjg.64.259 . S2CID   84345175.
  24. Futuyma, Douglas; Antonovics, Janis (1992-10-08). Oxford Surveys in Evolutionary Biology: Volume 8: 1991. Oxford University Press, USA. ISBN   978-0-19-507623-3.
  25. Banaticla-Hilario, Maria Celeste N.; McNally, Kenneth L.; van den Berg, Ronald G.; Sackville Hamilton, Nigel Ruaraidh (2013-08-01). "Crossability patterns within and among Oryza series Sativae species from Asia and Australia". Genetic Resources and Crop Evolution. 60 (6): 1899–1914. doi:10.1007/s10722-013-9965-4. ISSN   1573-5109. S2CID   254500351.
  26. Zheng, Xiao-Ming; Ge, Song (2010-06-09). "Ecological divergence in the presence of gene flow in two closely related Oryza species (Oryza rufipogon and O. nivara): Divergence With Gene Flow in Two Oryza Species". Molecular Ecology. 19 (12): 2439–2454. doi:10.1111/j.1365-294X.2010.04674.x. PMID   20653085. S2CID   29867086.
  27. Liu, Rong; Zheng, Xiao-Ming; Zhou, Lian; Zhou, Hai-Fei; Ge, Song (October 2015). "Population genetic structure of Oryza rufipogon and Oryza nivara : implications for the origin of O. nivara". Molecular Ecology. 24 (20): 5211–5228. doi:10.1111/mec.13375. PMID   26340227. S2CID   11924976.
  28. Juenger, Thomas E (2013-06-01). "Natural variation and genetic constraints on drought tolerance". Current Opinion in Plant Biology. Physiology and metabolism. 16 (3): 274–281. doi: 10.1016/j.pbi.2013.02.001 . ISSN   1369-5266. PMID   23462639.
  29. Servedio, Maria R.; Doorn, G. Sander Van; Kopp, Michael; Frame, Alicia M.; Nosil, Patrik (2011-08-01). "Magic traits in speciation: 'magic' but not rare?". Trends in Ecology & Evolution. 26 (8): 389–397. doi:10.1016/j.tree.2011.04.005. ISSN   0169-5347. PMID   21592615. S2CID   10412384.
  30. Sang, Tao; Ge, Song (2007-12-01). "Genetics and phylogenetics of rice domestication". Current Opinion in Genetics & Development. Genomes and evolution. 17 (6): 533–538. doi:10.1016/j.gde.2007.09.005. ISSN   0959-437X. PMID   17988855.
  31. Vaughan, Duncan A.; Lu, Bao-Rong; Tomooka, Norihiko (2008-04-01). "The evolving story of rice evolution". Plant Science. 174 (4): 394–408. doi:10.1016/j.plantsci.2008.01.016. ISSN   0168-9452.
  32. 1 2 Dobzhansky, Theodosius (1982). Genetics and the Origin of Species. Columbia University Press. ISBN   978-0-231-05475-1.
  33. Kilias, G.; Alahiotis, S. N.; Pelecanos, M. (1980). "A Multifactorial Genetic Investigation of Speciation Theory Using Drosophila melanogaster". Evolution. 34 (4): 730–737. doi:10.2307/2408027. ISSN   0014-3820. JSTOR   2408027. PMID   28563991.
  34. Magurran, A. E.; May, R. M.; Coyne, Jerry A.; Allen Orr, H. (1998-02-28). "The evolutionary genetics of speciation". Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences. 353 (1366): 287–305. doi:10.1098/rstb.1998.0210. PMC   1692208 . PMID   9533126.
  35. Funk, Daniel J. (December 1998). "Isolating a Role for Natural Selection in Speciation: Host Adaptation and Sexual Isolation in Neochlamisus bebbianae Leaf Beetles". Evolution. 52 (6): 1744–1759. doi: 10.1111/j.1558-5646.1998.tb02254.x . PMID   28565322. S2CID   22704901.