Ecdysteroid

Last updated

Chemical structures of ecdysteroids, ecdysone (top) and 20-hydroxyecdysone Ecdysteroids.svg
Chemical structures of ecdysteroids, ecdysone (top) and 20-hydroxyecdysone

Ecdysteroids are arthropod steroid hormones that are mainly responsible for molting, development and, to a lesser extent, reproduction; [1] [2] [3] [4] examples of ecdysteroids include ecdysone, ecdysterone, turkesterone and 2-deoxyecdysone. [5] These compounds are synthesized in arthropods from dietary cholesterol upon metabolism by the Halloween family of cytochrome P450s. [6] Phytoecdysteroids also appear in many plants mostly as a protection agents (toxins or antifeedants) against herbivore insects. [7] [8]

Contents

Ecdysterone has been tested on mammals due to the interest in its potential hypertrophic effect. It has been found to increase hypertrophy in rats at a similar level to some anabolic androgenic steroids and SARM S 1. [9] This is proposed to be through increase of Calcium leading to activation of Akt and protein synthesis in skeletal muscles. [10]

See also

Related Research Articles

<span class="mw-page-title-main">Testosterone</span> Primary male sex hormone

Testosterone is the primary male sex hormone and androgen in males. In humans, testosterone plays a key role in the development of male reproductive tissues such as testicles and prostate, as well as promoting secondary sexual characteristics such as increased muscle and bone mass, and the growth of body hair. It is associated with increased aggression, sex drive, dominance, courtship display, and a wide range of behavioral characteristics. In addition, testosterone in both sexes is involved in health and well-being, where it has a significant effect on overall mood, cognition, social and sexual behavior, metabolism and energy output, the cardiovascular system, and in the prevention of osteoporosis. Insufficient levels of testosterone in men may lead to abnormalities including frailty, accumulation of adipose fat tissue within the body, anxiety and depression, sexual performance issues, and bone loss.

<span class="mw-page-title-main">Steroid</span> Polycyclic organic compound having sterane as a core structure

A steroid is an organic compound with four fused rings arranged in a specific molecular configuration.

<span class="mw-page-title-main">Androgen</span> Any steroid hormone that promotes male characteristics

An androgen is any natural or synthetic steroid hormone that regulates the development and maintenance of male characteristics in vertebrates by binding to androgen receptors. This includes the embryological development of the primary male sex organs, and the development of male secondary sex characteristics at puberty. Androgens are synthesized in the testes, the ovaries, and the adrenal glands.

<span class="mw-page-title-main">Ecdysone</span> Precursor of an insect hormone

Ecdysone is a prohormone of the major insect molting hormone 20-hydroxyecdysone, secreted from the prothoracic glands. It is of steroidal structure. Insect molting hormones are generally called ecdysteroids. Ecdysteroids act as moulting hormones of arthropods but also occur in other related phyla where they can play different roles. In Drosophila melanogaster, an increase in ecdysone concentration induces the expression of genes coding for proteins that the larva requires. It causes chromosome puffs to form in polytene chromosomes. Recent findings in the laboratory of Chris Q. Doe have found a novel role of this hormone in regulating temporal gene transitions within neural stem cells of the fruit fly.

<span class="mw-page-title-main">Sex hormone</span> Type of steroid hormone

Sex hormones, also known as sex steroids, gonadocorticoids and gonadal steroids, are steroid hormones that interact with vertebrate steroid hormone receptors. The sex hormones include the androgens, estrogens, and progestogens. Their effects are mediated by slow genomic mechanisms through nuclear receptors as well as by fast nongenomic mechanisms through membrane-associated receptors and signaling cascades. The polypeptide hormones luteinizing hormone, follicle-stimulating hormone and gonadotropin-releasing hormone – each associated with the gonadotropin axis – are usually not regarded as sex hormones, although they play major sex-related roles.

<span class="mw-page-title-main">20-Hydroxyecdysone</span> Chemical compound

20-Hydroxyecdysone is a naturally occurring ecdysteroid hormone which controls the ecdysis (moulting) and metamorphosis of arthropods. It is therefore one of the most common moulting hormones in insects, crabs, etc. A phytoecdysteroid produced by various plants, including Cyanotis vaga, Ajuga turkestanica and Rhaponticum carthamoides, its purpose is presumably to disrupt the development and reproduction of insect pests. In arthropods, 20-hydroxyecdysone acts through the ecdysone receptor. Although mammals lack this receptor, 20-hydroxyecdysone affects mammalian biological systems. 20-Hydroxyecdysone is an ingredient of some supplements that aim to enhance physical performance. In humans, it is hypothesized to bind to the estrogen receptor beta (ERβ) protein-coding gene.

<span class="mw-page-title-main">Trenbolone</span> Anabolic steroid

Trenbolone is an androgen and anabolic steroid (AAS) of the nandrolone group which itself was never marketed. Trenbolone ester prodrugs, including trenbolone acetate and trenbolone hexahydrobenzylcarbonate, are or have been marketed for veterinary and clinical use. Trenbolone acetate is used in veterinary medicine in livestock to increase muscle growth and appetite, while trenbolone hexahydrobenzylcarbonate was formerly used clinically in humans but is now no longer marketed. In addition, although it is not approved for clinical or veterinary use, trenbolone enanthate is sometimes sold on the black market under the nickname Trenabol.

<span class="mw-page-title-main">Sarcopenia</span> Muscle loss due to ageing or immobility

Sarcopenia is a type of muscle loss that occurs with aging and/or immobility. It is characterized by the degenerative loss of skeletal muscle mass, quality, and strength. The rate of muscle loss is dependent on exercise level, co-morbidities, nutrition and other factors. The muscle loss is related to changes in muscle synthesis signalling pathways. It is distinct from cachexia, in which muscle is degraded through cytokine-mediated degradation, although the two conditions may co-exist. Sarcopenia is considered a component of frailty syndrome. Sarcopenia can lead to reduced quality of life, falls, fracture, and disability.

<span class="mw-page-title-main">Muscle atrophy</span> Loss of skeletal muscle mass

Muscle atrophy is the loss of skeletal muscle mass. It can be caused by immobility, aging, malnutrition, medications, or a wide range of injuries or diseases that impact the musculoskeletal or nervous system. Muscle atrophy leads to muscle weakness and causes disability.

<span class="mw-page-title-main">Fluoxymesterone</span> Chemical compound

Fluoxymesterone, sold under the brand names Halotestin and Ultandren among others, is an androgen and anabolic steroid (AAS) medication which is used in the treatment of low testosterone levels in men, delayed puberty in boys, breast cancer in women, and anemia. It is taken by mouth.

<span class="mw-page-title-main">Trenbolone acetate</span> Chemical compound

Trenbolone acetate, sold under brand names such as Finajet and Finaplix among others, is an androgen and anabolic steroid (AAS) medication which is used in veterinary medicine, specifically to increase the profitability of livestock by promoting muscle growth in cattle. It is given by injection into muscle.

<span class="mw-page-title-main">Muscle hypertrophy</span> Enlargement or overgrowth of a muscle organ

Muscle hypertrophy or muscle building involves a hypertrophy or increase in size of skeletal muscle through a growth in size of its component cells. Two factors contribute to hypertrophy: sarcoplasmic hypertrophy, which focuses more on increased muscle glycogen storage; and myofibrillar hypertrophy, which focuses more on increased myofibril size. It is the primary focus of bodybuilding-related activities.

Phytoecdysteroids are plant-derived ecdysteroids. Phytoecdysteroids are a class of chemicals that plants synthesize for defense against phytophagous insects. These compounds are mimics of hormones used by arthropods in the molting process known as ecdysis. When insects eat the plants with these chemicals they may prematurely molt, lose weight, or suffer other metabolic damage and die.

Ecdysone 20-monooxygenase (EC 1.14.99.22) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Ecdysone receptor</span>

The ecdysone receptor is a nuclear receptor found in arthropods, where it controls development and contributes to other processes such as reproduction. The receptor is a non-covalent heterodimer of two proteins, the EcR protein and ultraspiracle protein (USP). It binds to and is activated by ecdysteroids. Insect ecdysone receptors are currently better characterized than those from other arthropods, and mimics of ecdysteroids are used commercially as caterpillar-selective insecticides.

<span class="mw-page-title-main">Anabolic steroid</span> Steroidal androgen that is structurally related and has similar effects to testosterone

Anabolic steroids, also known as anabolic-androgenic steroids (AAS), are a class of drugs that are structurally related to testosterone, the main male sex hormone, and produce effects by binding to the androgen receptor (AR). Anabolic steroids have a number of medical uses, but are also used by athletes to increase muscle size, strength, and performance.

<span class="mw-page-title-main">Enobosarm</span> Investigational selective androgen receptor modulator

Enobosarm, also formerly known as ostarine and by the developmental code names GTx-024, MK-2866, and S-22, is a selective androgen receptor modulator (SARM) which is under development for the treatment of androgen receptor-positive breast cancer in women and for improvement of body composition in people taking GLP-1 receptor agonists like semaglutide. It was also under development for a variety of other indications, including treatment of cachexia, Duchenne muscular dystrophy, muscle atrophy or sarcopenia, and stress urinary incontinence, but development for all other uses has been discontinued. Enobosarm was evaluated for the treatment of muscle wasting related to cancer in late-stage clinical trials, and the drug improved lean body mass in these trials, but it was not effective in improving muscle strength. As a result, enobosarm was not approved and development for this use was terminated. Enobosarm is taken by mouth.

<span class="mw-page-title-main">Halloween genes</span> Set of genes that influence embryonic development

The halloween genes are a set of genes identified in Drosophila melanogaster that influence embryonic development. All of the genes code for cytochrome P450 enzymes in the ecdysteroidogenic pathway (biosynthesis of ecdysone from cholesterol). Ecdysteroids such as 20-hydroxyecdysone and ecdysone influence many of the morphological, physiological, biochemical changes that occur during molting in insects.

<span class="mw-page-title-main">Trenbolone enanthate</span> Chemical compound

Trenbolone enanthate, known by the nickname Trenabol, is a synthetic and injected anabolic–androgenic steroid (AAS) and a derivative of nandrolone which was never marketed. It is the C17β enanthate ester and a long-acting prodrug of trenbolone. Trenbolone enanthate was never approved for medical or veterinary use but is used in scientific research and has been sold on the internet black market as a designer steroid for bodybuilders and athletes.

<span class="mw-page-title-main">Turkesterone</span> Chemical compound

Turkesterone is a phytoecdysteroid found in numerous plant species, including Ajuga turkestanica, various Vitex species, Triticum aestivum, and Rhaponticum acaule.

References

  1. de Loof A (2006). "Ecdysteroids: the overlooked sex steroids of insects? Males: the black box". Insect Science. 13 (5): 325–338. Bibcode:2006InsSc..13..325D. doi:10.1111/j.1744-7917.2006.00101.x. S2CID   221810929.
  2. Krishnakumaran A, Schneiderman HA (December 1970). "Control of molting in mandibulate and chelicerate arthropods by ecdysones". The Biological Bulletin. 139 (3): 520–538. doi:10.2307/1540371. JSTOR   1540371. PMID   5494238.
  3. Margam VM, Gelman DB, Palli SR (June 2006). "Ecdysteroid titers and developmental expression of ecdysteroid-regulated genes during metamorphosis of the yellow fever mosquito, Aedes aegypti (Diptera: Culicidae)". Journal of Insect Physiology. 52 (6): 558–568. Bibcode:2006JInsP..52..558M. doi:10.1016/j.jinsphys.2006.02.003. PMID   16580015.
  4. Okamoto N, Fujinaga D, Yamanaka N (2023), "Steroid hormone signaling: What we can learn from insect models", Vitamins and Hormones, 123, Elsevier: 525–554, doi:10.1016/bs.vh.2022.12.006, ISBN   978-0-443-13455-5, PMID   37717997 , retrieved 2024-07-29
  5. "Ecdysteroids Information". Examine.com . Retrieved 27 May 2015.
  6. Mykles DL (November 2011). "Ecdysteroid metabolism in crustaceans". The Journal of Steroid Biochemistry and Molecular Biology. 127 (3–5): 196–203. doi:10.1016/j.jsbmb.2010.09.001. PMID   20837145. S2CID   23942645.
  7. Dinan L (June 2001). "Phytoecdysteroids: biological aspects". Phytochemistry. 57 (3): 325–339. Bibcode:2001PChem..57..325D. doi:10.1016/S0031-9422(01)00078-4. PMID   11393511.
  8. Dinan L, Savchenko T, Whiting P (July 2001). "On the distribution of phytoecdysteroids in plants". Cellular and Molecular Life Sciences. 58 (8): 1121–1132. doi:10.1007/PL00000926. PMC   11337386 . PMID   11529504. S2CID   8496934.
  9. Parr MK, Botrè F, Naß A, Hengevoss J, Diel P, Wolber G (June 2015). "Ecdysteroids: A novel class of anabolic agents?". Biology of Sport. 32 (2): 169–173. doi:10.5604/20831862.1144420 (inactive 2024-09-12). PMC   4447764 . PMID   26060342.{{cite journal}}: CS1 maint: DOI inactive as of September 2024 (link)
  10. Gorelick-Feldman J, Cohick W, Raskin I (October 2010). "Ecdysteroids elicit a rapid Ca2+ flux leading to Akt activation and increased protein synthesis in skeletal muscle cells". Steroids. 75 (10): 632–637. doi:10.1016/j.steroids.2010.03.008. PMC   3815456 . PMID   20363237.