Turkesterone

Last updated

Turkesterone
Turkesterone.svg
Turkesterone3D.png
Identifiers
  • (2S,3R,5R,9R,10R,11R,13R,14S,17S)-2,3,11,14-Tetrahydroxy-10,13-dimethyl-17-[(2R,3R)-2,3,6-trihydroxy-6-methylheptan-2-yl]-2,3,4,5,9,11,12,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-6-one
CAS Number
PubChem CID
ChemSpider
UNII
ChEMBL
CompTox Dashboard (EPA)
Chemical and physical data
Formula C27H44O8
Molar mass 496.641 g·mol−1
3D model (JSmol)
  • C[C@]12C[C@H]([C@H]3C(=CC(=O)[C@H]4[C@@]3(C[C@@H]([C@@H](C4)O)O)C)[C@@]1(CC[C@@H]2[C@](C)([C@@H](CCC(C)(C)O)O)O)O)O
  • InChI=1S/C27H44O8/c1-23(2,33)8-7-21(32)26(5,34)20-6-9-27(35)15-11-16(28)14-10-17(29)18(30)12-24(14,3)22(15)19(31)13-25(20,27)4/h11,14,17-22,29-35H,6-10,12-13H2,1-5H3/t14-,17+,18-,19+,20-,21+,22+,24-,25+,26+,27+/m0/s1
  • Key:WSBAGDDNVWTLOM-XHZKDPLLSA-N

Turkesterone is a naturally occurring phytoecdysteroid, a subclass of ecdysteroids, which are steroidal compounds structurally related to cholesterol. It is predominantly found in numerous plant species.

Contents

In plants

Turkesterone is found in diverse plants, including Ajuga turkestanica , [1] various Vitex species, [2] [3] [4] Triticum aestivum , [5] Cyanotis arachnoidea and Rhaponticum acaule. [6]

Properties

Turkesterone has a polyhydroxylated structure with a cyclopentanoperhydrophenanthrene skeleton, resembling cholesterol-derived steroids. [7]

Turkesterone is under laboratory research to determine if it has anabolic effects through the activation of the phosphoinositide 3-kinase and AKT signaling pathways. [8]

Its pharmacokinetics, bioavailability, and possible effects in humans remain to be determined.

See also

References

  1. Guibout L, Mamadalieva N, Balducci C, Girault JP, Lafont R (2015). "The minor ecdysteroids from Ajuga turkestanica" (PDF). Phytochemical Analysis. 26 (5): 293–300. Bibcode:2015PChAn..26..293G. doi:10.1002/pca.2563. PMID   25953625. S2CID   10373609.
  2. dos Santos TC, Delle Monache F, Leitão SG (March 2001). "Ecdysteroids from two Brazilian Vitex species". Fitoterapia. 72 (3): 215–220. doi:10.1016/s0367-326x(00)00304-x. PMID   11295296.
  3. Suksamrarn A, Kumpun S, Yingyongnarongkul BE (November 2002). "Ecdysteroids of Vitex scabra stem bark". Journal of Natural Products. 65 (11): 1690–1692. Bibcode:2002JNAtP..65.1690S. doi:10.1021/np020199o. PMID   12444704.
  4. Bunu MI, Ndinteh DT, Macdonald JR, Langat MK, Isyaka SM, Sadgrove NJ, et al. (August 2021). "Ecdysteroids from the Stem Bark of Vitex doniana Sweet (Lamiaceae; ex. Verbenaceae): A Geographically Variable African Medicinal Species". Antibiotics. 10 (8): 937. doi: 10.3390/antibiotics10080937 . PMC   8388959 . PMID   34438987.
  5. Janeczko A, Oklestkova J, Tarkowská D, Drygaś B (March 2021). "Naturally Occurring Ecdysteroids in Triticum aestivum L. and Evaluation of Fenarimol as a Potential Inhibitor of Their Biosynthesis in Plants". International Journal of Molecular Sciences. 22 (6): 2855. doi: 10.3390/ijms22062855 . PMC   7999220 . PMID   33799719.
  6. Zughdani M, Yusufoğlu HS, Ekiz G, Linden A, Çalış İ (December 2020). "Ecdysteroids from the underground parts of Rhaponticum acaule (L.) DC" (PDF). Phytochemistry. 180 112530. Bibcode:2020PChem.180k2530Z. doi:10.1016/j.phytochem.2020.112530. PMID   33049649. S2CID   222353903.
  7. Dinan L (June 2001). "Phytoecdysteroids: biological aspects". Phytochemistry. 57 (3): 325–339. Bibcode:2001PChem..57..325D. doi:10.1016/S0031-9422(01)00078-4. PMID   11393511.
  8. Isenmann E, Ambrosio G, Joseph JF, Mazzarino M, de la Torre X, Zimmer P, et al. (July 2019). "Ecdysteroids as non-conventional anabolic agent: performance enhancement by ecdysterone supplementation in humans". Archives of Toxicology. 93 (7): 1807–1816. Bibcode:2019ArTox..93.1807I. doi:10.1007/s00204-019-02490-x. hdl: 11573/1291269 . PMID   31123801.