Maxilla (arthropod mouthpart)

Last updated
In this malacostracan crustacean diagram, the maxillae are labelled maxilla and maxillula. General malacostracan en.svg
In this malacostracan crustacean diagram, the maxillae are labelled maxilla and maxillula.

In arthropods, the maxillae (singular maxilla) are paired structures present on the head as mouthparts in members of the clade Mandibulata, used for tasting and manipulating food. Embryologically, the maxillae are derived from the 4th and 5th segment of the head and the maxillary palps; segmented appendages extending from the base of the maxilla represent the former leg of those respective segments. In most cases, two pairs of maxillae are present and in different arthropod groups the two pairs of maxillae have been variously modified. In crustaceans, the first pair are called maxillulae (singular maxillula).

Contents

Modified coxae at the base of the pedipalps in spiders are also called "maxillae", [1] although they are not homologous with mandibulate maxillae.

Myriapoda

Millipedes

In millipedes, the second maxillae have been lost, reducing the mouthparts to only the first maxillae which have fused together to form a gnathochilarium, acting as a lower lip to the buccal cavity and the mandibles which have been enlarged and specialized greatly, used for chewing food. The gnathochilarium is richly infused with chemosensory and tactile receptors along its edge. [2] A pair of maxillary glands, also called nephridial organs, involved in osmoregulation and excreting nitrogenous waste open up to the gnathochilarium and wastes are passed entirely through the digestive tract before being evacuated. The nephridial organs are thought to be derived from similar organs in annelids, although reduced in number since the open circulatory system of arthropods lessens the demand on separate excretory organs. The reason for their anterior location is probably because these organs must be developed early on in the embryo and millipedes and other arthropods develop mainly by proliferation of cells at the posterior of the embryo. [3]

Centipedes

A diagram of the anatomy of the maxillae in centipedes Centipede.tiff
A diagram of the anatomy of the maxillae in centipedes

In centipedes, both pairs of maxillae are developed. The first maxillae are situated ventrally to the mandibles and obscure them from view. This pair consists of a basal plate formed from the fused coxae of each leg plus ventral sternite from this segment and is hence called a coxosternite and two pairs of conically jointed appendages called telopodites and coxal projections. The second maxillae, which partly cover the first maxillae, consist of only a telopodite and a coxosternite. The telopodite is recognizably leglike in structure and consists of three segments plus an apical claw. The second maxillae also have a metameric pore, which is the opening of the maxillary gland and maxillary nephridium homologous to those of millipedes. [4]

Crustaceans

In crustaceans, the two pairs of maxillae are called maxillulae (1st pair) and maxillae (2nd pair). They serve to transport food to the mandibles but also frequently help in the filtration process and additionally they may sometimes play a role in cleaning and grooming. These structures show an incredible diversity throughout crustaceans but generally are very much flattened and leaf-like. The two pairs are normally positioned very close together and their apical parts generally are in direct contact with the mandible. [5]

Hexapoda

Diagram of a single maxilla from the cockroach Periplaneta americana showing the anatomy and musculature Maxilla.tiff
Diagram of a single maxilla from the cockroach Periplaneta americana showing the anatomy and musculature

The generalized condition in hexapods is for the first pair of maxillae to consist of a basal triangular sclerite called the cardo and a large central sclerite called the stipes from which arise three processes: the lacinia, the galea and the maxillary palp. The lacinia is often strongly sclerotized and toothed. It functions to cut and manipulate food in the mouth. [6] The galea is a broad, scoop-like, lobe structure, which assists the maxillary palps in sampling items before ingestion. The maxillary palp is serially homologous to the walking leg while the cardo and stipes are regarded by most to be serially homologous to the first leg segment, the coxa. [7] The labium is immediately posterior to the first maxillae and is formed from the fusion of the second maxillae, although in lower orders including the Archaeognatha (bristletails) and Thysanura (silverfish) the two maxillae are not completely fused. It consists of a basal submentum, which connects with the prementum through a narrow sclerite, the mentum. The labium forms the lower portion of the buccal cavity in insects. The prementum has a pair of labial palps laterally, and two broad soft lobes called the paraglossae medially. These paraglossae have two small slender lobes called glossae at their base.

Specializations

In many hexapods, the mouthparts have been modified for different functions and the maxillae and labium can change in structure greatly. In bees, the maxillae and labium have been modified and fused to form a nectar-sucking proboscis. In the order Hemiptera, the true bugs, plant hoppers, etc., the mouthparts have been modified to form a beak for piercing. The labium forms a sheath around a set of stylets that consist of an outer pair of mandibles and an inner pair of maxillae. In lapping flies, a proboscis is formed from mostly the labium specialized for lapping up liquids. The labial palps form a labella which have sclerotized bands for directing liquid to a hypopharangeal stylet, through which the fly can imbibe liquids. In lepidopterans, the fluid-sucking proboscis is formed entirely from the galea of the maxillae although labial palps are also present. In Odonata nymphs, the labium forms a mask-like extensible structure, which is used for reaching out and grasping prey. [6]

Related Research Articles

<span class="mw-page-title-main">Maxilla</span> Upper jaw bone

In vertebrates, the maxilla is the upper fixed bone of the jaw formed from the fusion of two maxillary bones. In humans, the upper jaw includes the hard palate in the front of the mouth. The two maxillary bones are fused at the intermaxillary suture, forming the anterior nasal spine. This is similar to the mandible, which is also a fusion of two mandibular bones at the mandibular symphysis. The mandible is the movable part of the jaw.

<span class="mw-page-title-main">Pedipalp</span> Appendage of chelicerate

Pedipalps are the secondary pair of forward appendages among chelicerates – a group of arthropods including spiders, scorpions, horseshoe crabs, and sea spiders. The pedipalps are lateral to the chelicerae ("jaws") and anterior to the first pair of walking legs.

<span class="mw-page-title-main">Symphyla</span> Class of many-legged arthropods

Symphylans, also known as garden centipedes or pseudocentipedes, are soil-dwelling arthropods of the class Symphyla in the subphylum Myriapoda. Symphylans resemble centipedes, but are very small, non-venomous, and only distantly related to both centipedes and millipedes. More than 200 species are known worldwide.

<span class="mw-page-title-main">Appendage</span> External body part or natural prolongation, that protrudes from an organisms body

An appendage is an external body part, or natural prolongation, that protrudes from an organism's or microorganism's body.

<span class="mw-page-title-main">Decapod anatomy</span> Entire structure of a decapod crustacean

The decapod is made up of 20 body segments grouped into two main body parts: the cephalothorax and the pleon (abdomen). Each segment may possess one pair of appendages, although in various groups these may be reduced or missing. They are, from head to tail:

<span class="mw-page-title-main">Archaeognatha</span> Order of jumping bristletails

The Archaeognatha are an order of apterygotes, known by various common names such as jumping bristletails. Among extant insect taxa they are some of the most evolutionarily primitive; they appeared in the Middle Devonian period at about the same time as the arachnids. Specimens that closely resemble extant species have been found as both body and trace fossils in strata from the remainder of the Paleozoic Era and more recent periods. For historical reasons an alternative name for the order is Microcoryphia.

The arthropod leg is a form of jointed appendage of arthropods, usually used for walking. Many of the terms used for arthropod leg segments are of Latin origin, and may be confused with terms for bones: coxa, trochanter, femur, tibia, tarsus, ischium, metatarsus, carpus, dactylus, patella.

<span class="mw-page-title-main">Glossary of entomology terms</span> List of definitions of terms and concepts commonly used in the study of entomology

This glossary of entomology describes terms used in the formal study of insect species by entomologists.

<span class="mw-page-title-main">Entognatha</span> Class of wingless and ametabolous arthropods

The Entognatha are a class of wingless and ametabolous arthropods, which, together with the insects, makes up the subphylum Hexapoda. Their mouthparts are entognathous, meaning that they are retracted within the head, unlike the insects. Entognatha are apterous, meaning that they lack wings. The class contains three orders: Collembola, Diplura and Protura. These three groups were historically united with the now-obsolete order Thysanura to form the class Apterygota, but it has since been recognized that the hexapodous condition of these animals has evolved independently from that of insects, and independently within each order. The orders might not be closely related, and Entognatha is now considered to be a paraphyletic group.

<span class="mw-page-title-main">Arthropod mouthparts</span> Mouthparts of arthropods

The mouthparts of arthropods have evolved into a number of forms, each adapted to a different style or mode of feeding. Most mouthparts represent modified, paired appendages, which in ancestral forms would have appeared more like legs than mouthparts. In general, arthropods have mouthparts for cutting, chewing, piercing, sucking, shredding, siphoning, and filtering. This article outlines the basic elements of four arthropod groups: insects, myriapods, crustaceans and chelicerates. Insects are used as the model, with the novel mouthparts of the other groups introduced in turn. Insects are not, however, the ancestral form of the other arthropods discussed here.

<span class="mw-page-title-main">Mandible (arthropod mouthpart)</span> Pair of mouthparts used either for biting or cutting and holding food

The mandible of an arthropod is a pair of mouthparts used either for biting or cutting and holding food. Mandibles are often simply called jaws. Mandibles are present in the extant subphyla Myriapoda, Crustacea and Hexapoda. These groups make up the clade Mandibulata, which is currently believed to be the sister group to the rest of arthropods, the clade Arachnomorpha.

<span class="mw-page-title-main">Arthropod head problem</span> Dispute concerning the evolution of arthropods

The (pan)arthropod head problem is a long-standing zoological dispute concerning the segmental composition of the heads of the various arthropod groups, and how they are evolutionarily related to each other. While the dispute has historically centered on the exact make-up of the insect head, it has been widened to include other living arthropods, such as chelicerates, myriapods, and crustaceans, as well as fossil forms, such as the many arthropods known from exceptionally preserved Cambrian faunas. While the topic has classically been based on insect embryology, in recent years a great deal of developmental molecular data has become available. Dozens of more or less distinct solutions to the problem, dating back to at least 1897, have been published, including several in the 2000s.

<span class="mw-page-title-main">Insect mouthparts</span> Overview of mouthparts of insects

Insects have mouthparts that may vary greatly across insect species, as they are adapted to particular modes of feeding. The earliest insects had chewing mouthparts. Most specialisation of mouthparts are for piercing and sucking, and this mode of feeding has evolved a number of times independently. For example, mosquitoes and aphids both pierce and suck, though female mosquitoes feed on animal blood whereas aphids feed on plant fluids.

<span class="mw-page-title-main">External morphology of Lepidoptera</span> External features of butterflies and moths

The external morphology of Lepidoptera is the physiological structure of the bodies of insects belonging to the order Lepidoptera, also known as butterflies and moths. Lepidoptera are distinguished from other orders by the presence of scales on the external parts of the body and appendages, especially the wings. Butterflies and moths vary in size from microlepidoptera only a few millimetres long, to a wingspan of many inches such as the Atlas moth. Comprising over 160,000 described species, the Lepidoptera possess variations of the basic body structure which has evolved to gain advantages in adaptation and distribution.

<span class="mw-page-title-main">Insect morphology</span> Description of the physical form of insects

Insect morphology is the study and description of the physical form of insects. The terminology used to describe insects is similar to that used for other arthropods due to their shared evolutionary history. Three physical features separate insects from other arthropods: they have a body divided into three regions, three pairs of legs, and mouthparts located outside of the head capsule. This position of the mouthparts divides them from their closest relatives, the non-insect hexapods, which include Protura, Diplura, and Collembola.

This glossary describes the terms used in formal descriptions of spiders; where applicable these terms are used in describing other arachnids.

Insects are among the most diverse groups of animals on the planet, including more than a million described species and representing more than half of all known living organisms. The number of extant species is estimated at between six and ten million, found in nearly all environments, although only a small number of species occur in the oceans. This large extant means that the dietary habits of taxa include a large variety of behaviors.

<i>Megaphragma</i> Genus of wasps

Megaphragma is a genus of wasp in the family Trichogrammatidae. It contains some of the smallest known insects, Megaphragma caribea and Megaphragma mymaripenne, which are roughly the same size as some unicellular protozoans.

<span class="mw-page-title-main">Labellum (insect anatomy)</span>

In entomology, the term labellum has been applied variously and in partly contradictory ways. One usage is in referring to a elongation of the labrum that covers the base of the rostrum in certain Coleoptera and Hemiptera.

<i>Perothops</i> Genus of beetles

Perothops is a genus of false click beetles in the family Eucnemidae containing 3 species. They are known as beech-tree beetles or perothopid beetles. They are small as they are only 10–18 millimeters long. It is the only genus in the monotypic subfamily Perothopinae. They are dark-colored beetles that are found across the United States, generally in forests. The genus was discovered by Johann Friedrich von Eschscholtz in 1836. It used to be considered a family not part of Eucnemidae. The genus's name is from Greek, translating to "maimed/crippled eye" or "eye of little necklaces/bands", referring to the placement of perothopid eyes.

References

  1. Foelix, Rainer F. (2011). Biology of Spiders (3rd p/b ed.). Oxford University Press. p. 24. ISBN   978-0-19-973482-5.
  2. Hopkin, S. P. and Read, H. J. 1992. The Biology of Millipedes. Oxford University Press.
  3. Camatini, M. 1979. Myriapod Biology. Academis Press Inc.
  4. Lewis, J. G. E. 1981. The Biology of Centipedes. Cambridge University Press.
  5. Forest, J and von Vaupel Klein J. C. 2004. The Crustacea. Brill Academic Publishers. Volume 1.
  6. 1 2 Gullan, P. J. and Cranston, P. S. 2005. The Insects: An Outline of Entomology. 4th edition. Blackwell Publishing
  7. Ryuichiro Machida (2000). "Serial homology of the mandible and maxilla in the jumping bristletail Pedetontus unimaculatus Machida, based on external embryology (Hexapoda: Archaeognatha, Machilidae)". Journal of Morphology . 245 (1): 19–28. doi:10.1002/1097-4687(200007)245:1<19::AID-JMOR2>3.0.CO;2-H. PMID   10861829.