Neural decoding

Last updated

Neural decoding is a neuroscience field concerned with the hypothetical reconstruction of sensory and other stimuli from information that has already been encoded and represented in the brain by networks of neurons. [1] Reconstruction refers to the ability of the researcher to predict what sensory stimuli the subject is receiving based purely on neuron action potentials. Therefore, the main goal of neural decoding is to characterize how the electrical activity of neurons elicit activity and responses in the brain. [2]

Contents

This article specifically refers to neural decoding as it pertains to the mammalian neocortex.

Overview

When looking at a picture, people's brains are constantly making decisions about what object they are looking at, where they need to move their eyes next, and what they find to be the most salient aspects of the input stimulus. As these images hit the back of the retina, these stimuli are converted from varying wavelengths to a series of neural spikes called action potentials. These pattern of action potentials are different for different objects and different colors; we therefore say that the neurons are encoding objects and colors by varying their spike rates or temporal pattern. Now, if someone were to probe the brain by placing electrodes in the primary visual cortex, they may find what appears to be random electrical activity. These neurons are actually firing in response to the lower level features of visual input, possibly the edges of a picture frame. This highlights the crux of the neural decoding hypothesis: that it is possible to reconstruct a stimulus from the response of the ensemble of neurons that represent it. In other words, it is possible to look at spike train data and say that the person or animal being recorded is looking at a red ball.

With the recent breakthrough in large-scale neural recording and decoding technologies, researchers have begun to crack the neural code and already provided the first glimpse into the real-time neural code of memory traces as memory is formed and recalled in the hippocampus, a brain region known to be central for memory formation. [3] [4] Neuroscientists have initiated large-scale brain activity mapping or brain decoding project [5] to construct the brain-wide neural codes.

Encoding to decoding

Implicit about the decoding hypothesis is the assumption that neural spiking in the brain somehow represents stimuli in the external world. The decoding of neural data would be impossible if the neurons were firing randomly: nothing would be represented. This process of decoding neural data forms a loop with neural encoding. First, the organism must be able to perceive a set of stimuli in the world – say a picture of a hat. Seeing the stimuli must result in some internal learning: the encoding stage. After varying the range of stimuli that is presented to the observer, we expect the neurons to adapt to the statistical properties of the signals, encoding those that occur most frequently: [6] the efficient-coding hypothesis. Now neural decoding is the process of taking these statistical consistencies, a statistical model of the world, and reproducing the stimuli. This may map to the process of thinking and acting, which in turn guide what stimuli we receive, and thus, completing the loop.

In order to build a model of neural spike data, one must both understand how information is originally stored in the brain and how this information is used at a later point in time. This neural coding and decoding loop is a symbiotic relationship and the crux of the brain's learning algorithm. Furthermore, the processes that underlie neural decoding and encoding are very tightly coupled and may lead to varying levels of representative ability. [7] [8]

Spatial resolutions

Much of the neural decoding problem depends on the spatial resolution of the data being collected. The number of neurons needed to reconstruct the stimulus with reasonable accuracy depends on the means by which data is collected and the area being recorded. For example, rods and cones (which respond to colors of small visual areas) in the retina may require more recordings than simple cells (which respond to orientation of lines) in the primary visual cortex.

Previous recording methods relied on stimulating single neurons over a repeated series of tests in order to generalize this neuron's behavior. [9] New techniques such as high-density multi-electrode array recordings and multi-photon calcium imaging techniques now make it possible to record from upwards of a few hundred neurons. Even with better recording techniques, the focus of these recordings must be on an area of the brain that is both manageable and qualitatively understood. Many studies look at spike train data gathered from the ganglion cells in the retina, since this area has the benefits of being strictly feedforward, retinotopic, and amenable to current recording granularities. The duration, intensity, and location of the stimulus can be controlled to sample, for example, a particular subset of ganglion cells within a structure of the visual system. [10] Other studies use spike trains to evaluate the discriminatory ability of non-visual senses such as rat facial whiskers [11] and the olfactory coding of moth pheromone receptor neurons. [12]

Even with ever-improving recording techniques, one will always run into the limited sampling problem: given a limited number of recording trials, it is impossible to completely account for the error associated with noisy data obtained from stochastically functioning neurons (for example, a neuron's electric potential fluctuates around its resting potential due to a constant influx and efflux of sodium and potassium ions). Therefore, it is not possible to perfectly reconstruct a stimulus from spike data. Luckily, even with noisy data, the stimulus can still be reconstructed within acceptable error bounds. [13]

Temporal resolutions

Timescales and frequencies of stimuli being presented to the observer are also of importance to decoding the neural code. Quicker timescales and higher frequencies demand faster and more precise responses in neural spike data. In humans, millisecond precision has been observed throughout the visual cortex, the retina, [14] and the lateral geniculate nucleus, so one would suspect this to be the appropriate measuring frequency. This has been confirmed in studies that quantify the responses of neurons in the lateral geniculate nucleus to white-noise and naturalistic movie stimuli. [15] At the cellular level, spike-timing-dependent plasticity operates at millisecond timescales; [16] therefore, models seeking biological relevance should be able to perform at these temporal scales.

Probabilistic decoding

When decoding neural data, arrival times of each spike , and the probability of seeing a certain stimulus, may be the extent of the available data. The prior distribution defines an ensemble of signals, and represents the likelihood of seeing a stimulus in the world based on previous experience. The spike times may also be drawn from a distribution ; however, what we want to know is the probability distribution over a set of stimuli given a series of spike trains , which is called the response-conditional ensemble. What remains is the characterization of the neural code by translating stimuli into spikes, ; the traditional approach to calculating this probability distribution has been to fix the stimulus and examine the responses of the neuron. Combining everything using Bayes' Rule results in the simplified probabilistic characterization of neural decoding: . An area of active research consists of finding better ways of representing and determining . [17] The following are some such examples.

Spike train number

The simplest coding strategy is the spike train number coding. This method assumes that the spike number is the most important quantification of spike train data. In spike train number coding, each stimulus is represented by a unique firing rate across the sampled neurons. The color red may be signified by 5 total spikes across the entire set of neurons, while the color green may be 10 spikes; each spike is pooled together into an overall count. This is represented by:

where the number of spikes, is the number of spikes of neuron at stimulus presentation time , and s is the stimulus.

Instantaneous rate code

Adding a small temporal component results in the spike timing coding strategy. Here, the main quantity measured is the number of spikes that occur within a predefined window of time T. This method adds another dimension to the previous. This timing code is given by:

P(/Sr.)=2 we index hr eg

where is the jth spike on the lth presentation of neuron i, is the firing rate of neuron i at time t, and 0 to T is the start to stop times of each trial.

Temporal correlation

Temporal correlation code, as the name states, adds correlations between individual spikes. This means that the time between a spike and its preceding spike is included. This is given by:

where is the time interval between a neurons spike and the one preceding it.

Ising decoder

Another description of neural spike train data uses the Ising model borrowed from the physics of magnetic spins. Because neural spike trains are effectively binarized (either on or off) at small time scales (10 to 20 ms), the Ising model is able to effectively capture the present pairwise correlations, [18] and is given by:

where is the set of binary responses of neuron i, is the external fields function, is the pairwise couplings function, and is the partition function

Agent-based decoding

In addition to the probabilistic approach, agent-based models exist that capture the spatial dynamics of the neural system under scrutiny. One such model is hierarchical temporal memory, which is a machine learning framework that organizes visual perception problem into a hierarchy of interacting nodes (neurons). The connections between nodes on the same levels and a lower levels are termed synapses, and their interactions are subsequently learning. Synapse strengths modulate learning and are altered based on the temporal and spatial firing of nodes in response to input patterns. [19] [20]

While it is possible to take the firing rates of these modeled neurons, and transform them into the probabilistic and mathematical frameworks described above, agent-based models provide the ability to observe the behavior of the entire population of modeled neurons. Researchers can circumvent the limitations implicit with lab-based recording techniques. Because this approach does rely on modeling biological systems, error arises in the assumptions made by the researcher and in the data used in parameter estimation.

Applicability

The advancement in our understanding of neural decoding benefits the development of brain-machine interfaces, prosthetics [21] and the understanding of neurological disorders such as epilepsy. [22]

See also

Related Research Articles

Visual processing is a term that is used to refer to the brain's ability to use and interpret visual information from the world around us. The process of converting light energy into a meaningful image is a complex process that is facilitated by numerous brain structures and higher level cognitive processes. On an anatomical level, light energy first enters the eye through the cornea, where the light is bent. After passing through the cornea, light passes through the pupil and then lens of the eye, where it is bent to a greater degree and focused upon the retina. The retina is where a group of light-sensing cells, called photoreceptors are located. There are two types of photoreceptors: rods and cones. Rods are sensitive to dim light and cones are better able to transduce bright light. Photoreceptors connect to bipolar cells, which induce action potentials in retinal ganglion cells. These retinal ganglion cells form a bundle at the optic disc, which is a part of the optic nerve. The two optic nerves from each eye meet at the optic chiasm, where nerve fibers from each nasal retina cross which results in the right half of each eye's visual field being represented in the left hemisphere and the left half of each eye's visual fields being represented in the right hemisphere. The optic tract then diverges into two visual pathways, the geniculostriate pathway and the tectopulvinar pathway, which send visual information to the visual cortex of the occipital lobe for higher level processing.

Multisensory integration, also known as multimodal integration, is the study of how information from the different sensory modalities may be integrated by the nervous system. A coherent representation of objects combining modalities enables animals to have meaningful perceptual experiences. Indeed, multisensory integration is central to adaptive behavior because it allows animals to perceive a world of coherent perceptual entities. Multisensory integration also deals with how different sensory modalities interact with one another and alter each other's processing.

<span class="mw-page-title-main">Neural oscillation</span> Brainwaves, repetitive patterns of neural activity in the central nervous system

Neural oscillations, or brainwaves, are rhythmic or repetitive patterns of neural activity in the central nervous system. Neural tissue can generate oscillatory activity in many ways, driven either by mechanisms within individual neurons or by interactions between neurons. In individual neurons, oscillations can appear either as oscillations in membrane potential or as rhythmic patterns of action potentials, which then produce oscillatory activation of post-synaptic neurons. At the level of neural ensembles, synchronized activity of large numbers of neurons can give rise to macroscopic oscillations, which can be observed in an electroencephalogram. Oscillatory activity in groups of neurons generally arises from feedback connections between the neurons that result in the synchronization of their firing patterns. The interaction between neurons can give rise to oscillations at a different frequency than the firing frequency of individual neurons. A well-known example of macroscopic neural oscillations is alpha activity.

A neuronal ensemble is a population of nervous system cells involved in a particular neural computation.

Sensory neuroscience is a subfield of neuroscience which explores the anatomy and physiology of neurons that are part of sensory systems such as vision, hearing, and olfaction. Neurons in sensory regions of the brain respond to stimuli by firing one or more nerve impulses following stimulus presentation. How is information about the outside world encoded by the rate, timing, and pattern of action potentials? This so-called neural code is currently poorly understood and sensory neuroscience plays an important role in the attempt to decipher it. Looking at early sensory processing is advantageous since brain regions that are "higher up" contain neurons which encode more abstract representations. However, the hope is that there are unifying principles which govern how the brain encodes and processes information. Studying sensory systems is an important stepping stone in our understanding of brain function in general.

The grandmother cell, sometimes called the "Jennifer Aniston neuron", is a hypothetical neuron that represents a complex but specific concept or object. It activates when a person "sees, hears, or otherwise sensibly discriminates" a specific entity, such as their grandmother. It contrasts with the concept of ensemble coding, where the unique set of features characterizing the grandmother is detected as a particular activation pattern across an ensemble of neurons, rather than being detected by a specific "grandmother cell".

<span class="mw-page-title-main">Efficient coding hypothesis</span>

The efficient coding hypothesis was proposed by Horace Barlow in 1961 as a theoretical model of sensory coding in the brain. Within the brain, neurons communicate with one another by sending electrical impulses referred to as action potentials or spikes. One goal of sensory neuroscience is to decipher the meaning of these spikes in order to understand how the brain represents and processes information about the outside world. Barlow hypothesized that the spikes in the sensory system formed a neural code for efficiently representing sensory information. By efficient Barlow meant that the code minimized the number of spikes needed to transmit a given signal. This is somewhat analogous to transmitting information across the internet, where different file formats can be used to transmit a given image. Different file formats require different number of bits for representing the same image at given distortion level, and some are better suited for representing certain classes of images than others. According to this model, the brain is thought to use a code which is suited for representing visual and audio information representative of an organism's natural environment.

Neural coding is a neuroscience field concerned with characterising the hypothetical relationship between the stimulus and the neuronal responses, and the relationship among the electrical activities of the neurons in the ensemble. Based on the theory that sensory and other information is represented in the brain by networks of neurons, it is believed that neurons can encode both digital and analog information.

<span class="mw-page-title-main">Spike-triggered average</span>

The spike-triggered averaging (STA) is a tool for characterizing the response properties of a neuron using the spikes emitted in response to a time-varying stimulus. The STA provides an estimate of a neuron's linear receptive field. It is a useful technique for the analysis of electrophysiological data.

Repetition priming refers to improvements in a behavioural response when stimuli are repeatedly presented. The improvements can be measured in terms of accuracy or reaction time and can occur when the repeated stimuli are either identical or similar to previous stimuli. These improvements have been shown to be cumulative, so as the number of repetitions increases the responses get continually faster up to a maximum of around seven repetitions. These improvements are also found when the repeated items are changed slightly in terms of orientation, size and position. The size of the effect is also modulated by the length of time the item is presented for and the length time between the first and subsequent presentations of the repeated items.

<span class="mw-page-title-main">Spiking neural network</span> Artificial neural network that mimics neurons

Spiking neural networks (SNNs) are artificial neural networks that more closely mimic natural neural networks. In addition to neuronal and synaptic state, SNNs incorporate the concept of time into their operating model. The idea is that neurons in the SNN do not transmit information at each propagation cycle, but rather transmit information only when a membrane potential—an intrinsic quality of the neuron related to its membrane electrical charge—reaches a specific value, called the threshold. When the membrane potential reaches the threshold, the neuron fires, and generates a signal that travels to other neurons which, in turn, increase or decrease their potentials in response to this signal. A neuron model that fires at the moment of threshold crossing is also called a spiking neuron model.

<span class="mw-page-title-main">Biological neuron model</span> Mathematical descriptions of the properties of certain cells in the nervous system

Biological neuron models, also known as spiking neuron models, are mathematical descriptions of neurons. In particular, these models describe how the voltage potential across the cell membrane changes over time. In an experimental setting, stimulating neurons with an electrical current generates an action potential, that propagates down the neuron's axon. This axon can branch out and connect to a large number of downstream neurons at sites called synapses. At these synapses, the spike can cause release of a biochemical substance (neurotransmitter), which in turn can change the voltage potential of downstream neurons, potentially leading to spikes in those downstream neurons, thus propagating the signal. As many as 85% of neurons in the neocortex, the outermost layer of the mammalian brain, consists of excitatory pyramidal neurons, and each pyramidal neuron receives tens of thousands of inputs from other neurons. Thus, spiking neurons are a major information processing unit of the nervous system.

The H1 neuron is located in the visual cortex of true flies of the order Diptera and mediates motor responses to visual stimuli. H1 is sensitive to horizontal motion in the visual field and enables the fly to rapidly and accurately respond to optic flow with motor corrections to stabilize flight. It is particularly responsive to horizontal forward motion associated with movement of the fly's own body during flight. Damage to H1 impairs the fly's ability to counteract disturbances during flight, suggesting that it is a necessary component of the optomotor response. H1 is an ideal system for studying the neural basis of information processing due to its highly selective and predictable responses to stimuli. Since the initial anatomical and physiological characterizations of H1 in 1976, study of the neuron has greatly benefited the understanding of neural coding in a wide range of organisms, especially the relationship between the neural code and behavior.

Models of neural computation are attempts to elucidate, in an abstract and mathematical fashion, the core principles that underlie information processing in biological nervous systems, or functional components thereof. This article aims to provide an overview of the most definitive models of neuro-biological computation as well as the tools commonly used to construct and analyze them.

Surround suppression is where the relative firing rate of a neuron may under certain conditions decrease when a particular stimulus is enlarged. It has been observed in electrophysiology studies of the brain and has been noted in many sensory neurons, most notably in the early visual system. Surround suppression is defined as a reduction in the activity of a neuron in response to a stimulus outside its classical receptive field.

Biological motion perception is the act of perceiving the fluid unique motion of a biological agent. The phenomenon was first documented by Swedish perceptual psychologist, Gunnar Johansson, in 1973. There are many brain areas involved in this process, some similar to those used to perceive faces. While humans complete this process with ease, from a computational neuroscience perspective there is still much to be learned as to how this complex perceptual problem is solved. One tool which many research studies in this area use is a display stimuli called a point light walker. Point light walkers are coordinated moving dots that simulate biological motion in which each dot represents specific joints of a human performing an action.

Joe Z. Tsien(钱卓) is a neuroscientist who pioneered Cre/lox-neurogenetics in the mid-1990s, a versatile toolbox for neuroscientists to study the complex relationships between genes, neural circuits, and behaviors. He is also known as the creator of the smart mouse Doogie in the late 1990s while being a faculty member at Princeton University.

A binding neuron (BN) is an abstract concept of processing of input impulses in a generic neuron based on their temporal coherence and the level of neuronal inhibition. Mathematically, the concept may be implemented by most neuronal models including the well-known leaky integrate-and-fire model. The BN concept originated in 1996 and 1998 papers by A. K. Vidybida,

<span class="mw-page-title-main">Laura Busse</span> German neuroscientist

Laura Busse is a German neuroscientist and professor of Systemic Neuroscience within the Division of Neurobiology at the Ludwig Maximilian University of Munich. Busse's lab studies context-dependent visual processing in mouse models by performing large scale in vivo electrophysiological recordings in the thalamic and cortical circuits of awake and behaving mice.

The spike response model (SRM) is a spiking neuron model in which spikes are generated by either a deterministic or a stochastic threshold process. In the SRM, the membrane voltage V is described as a linear sum of the postsynaptic potentials (PSPs) caused by spike arrivals to which the effects of refractoriness and adaptation are added. The threshold is either fixed or dynamic. In the latter case it increases after each spike. The SRM is flexible enough to account for a variety of neuronal firing pattern in response to step current input. The SRM has also been used in the theory of computation to quantify the capacity of spiking neural networks; and in the neurosciences to predict the subthreshold voltage and the firing times of cortical neurons during stimulation with a time-dependent current stimulation. The name Spike Response Model points to the property that the two important filters and of the model can be interpreted as the response of the membrane potential to an incoming spike (response kernel , the PSP) and to an outgoing spike (response kernel , also called refractory kernel). The SRM has been formulated in continuous time and in discrete time. The SRM can be viewed as a generalized linear model (GLM) or as an (integrated version of) a generalized integrate-and-fire model with adaptation.

References

  1. Johnson, K. O. (June 2000). "Neural coding". Neuron. 26 (3): 563–566. doi: 10.1016/S0896-6273(00)81193-9 . ISSN   0896-6273. PMID   10896153.
  2. Jacobs AL, Fridman G, Douglas RM, et al. (April 2009). "Ruling out and ruling in neural codes". Proc. Natl. Acad. Sci. U.S.A. 106 (14): 5936–41. Bibcode:2009PNAS..106.5936J. doi: 10.1073/pnas.0900573106 . PMC   2657589 . PMID   19297621.
  3. Chen G, Wang LP, Tsien JZ (Dec 2009). "Neural population-level memory traces in the mouse hippocampus". PLOS ONE. 4 (12): e8256. Bibcode:2009PLoSO...4.8256C. doi: 10.1371/journal.pone.0008256 . PMC   2788416 . PMID   20016843. Open Access logo PLoS transparent.svg
  4. Zhang H, Chen G, Kuang H, Tsien JZ (Nov 2013). "Mapping and deciphering neural codes of NMDA receptor-dependent fear memory engrams in the hippocampus". PLOS ONE. 8 (11): e79454. Bibcode:2013PLoSO...879454Z. doi: 10.1371/journal.pone.0079454 . PMC   3841182 . PMID   24302990. Open Access logo PLoS transparent.svg
  5. The Brain Decoding Project. http://braindecodingproject.org/
  6. Barlow, H. (1961). Possible principles underlying the transformation of sensory messages. Sensory communication.
  7. Chacron MJ, Longtin A, Maler L (2004). "To burst or not to burst?". J Comput Neurosci. 17 (2): 127–36. doi:10.1023/B:JCNS.0000037677.58916.6b. PMC   5283877 . PMID   15306735.
  8. Boloori AR, Jenks RA, Desbordes G, Stanley GB (July 2010). "Encoding and decoding cortical representations of tactile features in the vibrissa system". J. Neurosci. 30 (30): 9990–10005. doi:10.1523/JNEUROSCI.0807-10.2010. PMC   2957657 . PMID   20668184.
  9. Hubel DH, Wiesel TN, LeVay S (April 1977). "Plasticity of ocular dominance columns in monkey striate cortex". Philos. Trans. R. Soc. Lond. B Biol. Sci. 278 (961): 377–409. Bibcode:1977RSPTB.278..377H. doi: 10.1098/rstb.1977.0050 . PMID   19791.
  10. Warland DK, Reinagel P, Meister M (November 1997). "Decoding visual information from a population of retinal ganglion cells". J. Neurophysiol. 78 (5): 2336–50. doi:10.1152/jn.1997.78.5.2336. PMID   9356386. S2CID   5711409.
  11. Arabzadeh E, Panzeri S, Diamond ME (September 2006). "Deciphering the spike train of a sensory neuron: counts and temporal patterns in the rat whisker pathway". J. Neurosci. 26 (36): 9216–26. doi:10.1523/JNEUROSCI.1491-06.2006. PMC   6674492 . PMID   16957078.
  12. Kostal L, Lansky P, Rospars JP (April 2008). "Efficient olfactory coding in the pheromone receptor neuron of a moth". PLOS Comput. Biol. 4 (4): e1000053. Bibcode:2008PLSCB...4E0053K. doi: 10.1371/journal.pcbi.1000053 . PMC   2291565 . PMID   18437217. Open Access logo PLoS transparent.svg
  13. Rolls ET, Treves A (November 2011). "The neuronal encoding of information in the brain". Prog. Neurobiol. 95 (3): 448–90. doi:10.1016/j.pneurobio.2011.08.002. PMID   21907758. S2CID   18913691.
  14. Berry MJ, Meister M (March 1998). "Refractoriness and neural precision". J. Neurosci. 18 (6): 2200–11. doi:10.1523/JNEUROSCI.18-06-02200.1998. PMC   6792934 . PMID   9482804.
  15. Butts DA, Weng C, Jin J, et al. (September 2007). "Temporal precision in the neural code and the timescales of natural vision". Nature. 449 (7158): 92–5. Bibcode:2007Natur.449...92B. doi:10.1038/nature06105. PMID   17805296. S2CID   4402057.
  16. Song S, Miller KD, Abbott LF (September 2000). "Competitive Hebbian learning through spike-timing-dependent synaptic plasticity". Nat. Neurosci. 3 (9): 919–26. doi:10.1038/78829. PMID   10966623. S2CID   9530143.
  17. Rieke, F. (1999). Spikes: exploring the neural code. exploring the neural code (p. 395). The MIT Press.
  18. Schaub MT, Schultz SR (February 2012). "The Ising decoder: reading out the activity of large neural ensembles". J Comput Neurosci. 32 (1): 101–18. arXiv: 1009.1828 . doi:10.1007/s10827-011-0342-z. PMID   21667155. S2CID   7716473.
  19. Hawkins, J., Ahmad, S., & Dubinsky, D. (2006). Hierarchical temporal memory: Concepts, theory and terminology. Whitepaper.
  20. Hawkins, J., & Blakeslee, S. (2005). On intelligence. Owl Books.
  21. Donoghue JP (November 2002). "Connecting cortex to machines: recent advances in brain interfaces". Nat. Neurosci. 5 (Suppl): 1085–8. doi:10.1038/nn947. PMID   12403992. S2CID   9409432.
  22. Rolston JD, Desai SA, Laxpati NG, Gross RE (October 2011). "Electrical stimulation for epilepsy: experimental approaches". Neurosurg. Clin. N. Am. 22 (4): 425–42, v. doi:10.1016/j.nec.2011.07.010. PMC   3190668 . PMID   21939841.