Sensory neuroscience

Last updated

Sensory neuroscience is a subfield of neuroscience which explores the anatomy and physiology of neurons that are part of sensory systems such as vision, hearing, and olfaction. Neurons in sensory regions of the brain respond to stimuli by firing one or more nerve impulses (action potentials) following stimulus presentation. How is information about the outside world encoded by the rate, timing, and pattern of action potentials? This so-called neural code is currently poorly understood and sensory neuroscience plays an important role in the attempt to decipher it. Looking at early sensory processing is advantageous since brain regions that are "higher up" (e.g. those involved in memory or emotion) contain neurons which encode more abstract representations. However, the hope is that there are unifying principles which govern how the brain encodes and processes information. Studying sensory systems is an important stepping stone in our understanding of brain function in general.

Contents

Typical experiments

A typical experiment in sensory neuroscience involves the presentation of a series of relevant stimuli to an experimental subject while the subject's brain is being monitored. This monitoring can be accomplished by noninvasive means such as functional magnetic resonance imaging (fMRI) or electroencephalography (EEG), or by more invasive means such as electrophysiology, the use of electrodes to record the electrical activity of single neurons or groups of neurons. fMRI measures changes in blood flow which related to the level of neural activity and provides low spatial and temporal resolution, but does provide data from the whole brain. In contrast, Electrophysiology provides very high temporal resolution (the shapes of single spikes can be resolved) and data can be obtained from single cells. This is important since computations are performed within the dendrites of individual neurons.

Single neuron experiments

In most of the central nervous system, neurons communicate exclusively by sending each other action potentials, colloquially known as "spikes". It is therefore thought that all of the information a sensory neuron encodes about the outside world can be inferred by the pattern of its spikes. Current experimental techniques cannot measure individual spikes noninvasively. Such encoding includes the Dual Process Theory and how we think in a conscious and unconscious manner. [1]

A typical single neuron experiment will consist of isolating a neuron (that is, navigating the neuron until the experimenter finds a neuron which spikes in response to the type of stimulus to be presented, and (optionally) determining that all of the spikes observed indeed come from a single neuron), then presenting a stimulus protocol. Because neural responses are inherently variable (that is, their spiking pattern may depend on more than just the stimulus which is presented, although not all of this variability may be true noise, since factors other than the presented stimulus may affect the sensory neuron under study), often the same stimulus protocol is repeated many times to get a feel for the variability a neuron may have. One common analysis technique is to study the neuron's average time-varying firing rate, called its post stimulus time histogram or PSTH. [2]

Receptive field estimation

One major goal of sensory neuroscience is to try to estimate the neuron's receptive field; that is, to try to determine which stimuli cause the neuron to fire in what ways. One common way to find the receptive field is to use linear regression to find which stimulus characteristics typically caused neurons to become excited or depressed. Since the receptive field of a sensory neuron can vary in time (i.e. latency between the stimulus and the effect it has on the neuron) and in some spatial dimension (literally space for vision and somatosensory cells, but other "spatial" dimensions such as the frequency of a sound for auditory neurons), the term spatio temporal receptive field or STRF is often used to describe these receptive fields. [3]

Natural stimuli

One recent trend in sensory neuroscience has been the adoption of natural stimuli for the characterization of sensory neurons. There is good reason to believe that there has been evolutionary pressure on sensory systems to be able to represent natural stimuli well, so sensory systems may exhibit the most relevant behaviour in response to natural stimuli. The adoption of natural stimuli in sensory neuroscience has been slowed by the fact that the mathematical descriptions of natural stimuli tend to be more complex than of simplified artificial stimuli such as simple tones or clicks in audition or line patterns in vision. Free software is now available to help neuroscientists interested in estimating receptive fields cope with the difficulty of using natural stimuli.

Sensory neuroscience is also used as a bottom-up approach to studying consciousness. For example, visual sense and representation has been studied by Crick and Koch (1998), [4] and experiments have been suggested in order to test various hypotheses in this research stream.

See also

Related Research Articles

<span class="mw-page-title-main">Sensory nervous system</span> Part of the nervous system responsible for processing sensory information

The sensory nervous system is a part of the nervous system responsible for processing sensory information. A sensory system consists of sensory neurons, neural pathways, and parts of the brain involved in sensory perception and interoception. Commonly recognized sensory systems are those for vision, hearing, touch, taste, smell, balance and visceral sensation. Sense organs are transducers that convert data from the outer physical world to the realm of the mind where people interpret the information, creating their perception of the world around them.

<span class="mw-page-title-main">Neuroethology</span> Study of animal behavior and its underlying mechanistic control by the nervous system

Neuroethology is the evolutionary and comparative approach to the study of animal behavior and its underlying mechanistic control by the nervous system. It is an interdisciplinary science that combines both neuroscience and ethology. A central theme of neuroethology, which differentiates it from other branches of neuroscience, is its focus on behaviors that have been favored by natural selection rather than on behaviors that are specific to a particular disease state or laboratory experiment.

The receptive field, or sensory space, is a delimited medium where some physiological stimuli can evoke a sensory neuronal response in specific organisms.

Multisensory integration, also known as multimodal integration, is the study of how information from the different sensory modalities may be integrated by the nervous system. A coherent representation of objects combining modalities enables animals to have meaningful perceptual experiences. Indeed, multisensory integration is central to adaptive behavior because it allows animals to perceive a world of coherent perceptual entities. Multisensory integration also deals with how different sensory modalities interact with one another and alter each other's processing.

Neuronal tuning refers to the hypothesized property of brain cells by which they selectively represent a particular type of sensory, association, motor, or cognitive information. Some neuronal responses have been hypothesized to be optimally tuned to specific patterns through experience. Neuronal tuning can be strong and sharp, as observed in primary visual cortex, or weak and broad, as observed in neural ensembles. Single neurons are hypothesized to be simultaneously tuned to several modalities, such as visual, auditory, and olfactory. Neurons hypothesized to be tuned to different signals are often hypothesized to integrate information from the different sources. In computational models called neural networks, such integration is the major principle of operation. The best examples of neuronal tuning can be seen in the visual, auditory, olfactory, somatosensory, and memory systems, although due to the small number of stimuli tested the generality of neuronal tuning claims is still an open question.

The spectro-temporal receptive field or spatio-temporal receptive field (STRF) of a neuron represents which types of stimuli excite or inhibit that neuron. "Spectro-temporal" refers most commonly to audition, where the neuron's response depends on frequency versus time, while "spatio-temporal" refers to vision, where the neuron's response depends on spatial location versus time. Thus they are not exactly the same concept, but both are referred to as STRF and serve a similar role in the analysis of neural responses.

<span class="mw-page-title-main">Lateral inhibition</span> Capacity of an excited neuron to reduce activity of its neighbors

In neurobiology, lateral inhibition is the capacity of an excited neuron to reduce the activity of its neighbors. Lateral inhibition disables the spreading of action potentials from excited neurons to neighboring neurons in the lateral direction. This creates a contrast in stimulation that allows increased sensory perception. It is also referred to as lateral antagonism and occurs primarily in visual processes, but also in tactile, auditory, and even olfactory processing. Cells that utilize lateral inhibition appear primarily in the cerebral cortex and thalamus and make up lateral inhibitory networks (LINs). Artificial lateral inhibition has been incorporated into artificial sensory systems, such as vision chips, hearing systems, and optical mice. An often under-appreciated point is that although lateral inhibition is visualised in a spatial sense, it is also thought to exist in what is known as "lateral inhibition across abstract dimensions." This refers to lateral inhibition between neurons that are not adjacent in a spatial sense, but in terms of modality of stimulus. This phenomenon is thought to aid in colour discrimination.

<span class="mw-page-title-main">Efficient coding hypothesis</span>

The efficient coding hypothesis was proposed by Horace Barlow in 1961 as a theoretical model of sensory coding in the brain. Within the brain, neurons communicate with one another by sending electrical impulses referred to as action potentials or spikes. One goal of sensory neuroscience is to decipher the meaning of these spikes in order to understand how the brain represents and processes information about the outside world. Barlow hypothesized that the spikes in the sensory system formed a neural code for efficiently representing sensory information. By efficient Barlow meant that the code minimized the number of spikes needed to transmit a given signal. This is somewhat analogous to transmitting information across the internet, where different file formats can be used to transmit a given image. Different file formats require different number of bits for representing the same image at given distortion level, and some are better suited for representing certain classes of images than others. According to this model, the brain is thought to use a code which is suited for representing visual and audio information representative of an organism's natural environment.

Neural coding is a neuroscience field concerned with characterising the hypothetical relationship between the stimulus and the individual or ensemble neuronal responses and the relationship among the electrical activity of the neurons in the ensemble. Based on the theory that sensory and other information is represented in the brain by networks of neurons, it is thought that neurons can encode both digital and analog information.

<span class="mw-page-title-main">Linear-nonlinear-Poisson cascade model</span>

The linear-nonlinear-Poisson (LNP) cascade model is a simplified functional model of neural spike responses. It has been successfully used to describe the response characteristics of neurons in early sensory pathways, especially the visual system. The LNP model is generally implicit when using reverse correlation or the spike-triggered average to characterize neural responses with white-noise stimuli.

The H1 neuron is located in the visual cortex of true flies of the order Diptera and mediates motor responses to visual stimuli. H1 is sensitive to horizontal motion in the visual field and enables the fly to rapidly and accurately respond to optic flow with motor corrections to stabilize flight. It is particularly responsive to horizontal forward motion associated with movement of the fly's own body during flight. Damage to H1 impairs the fly's ability to counteract disturbances during flight, suggesting that it is a necessary component of the optomotor response. H1 is an ideal system for studying the neural basis of information processing due to its highly selective and predictable responses to stimuli. Since the initial anatomical and physiological characterizations of H1 in 1976, study of the neuron has greatly benefited the understanding of neural coding in a wide range of organisms, especially the relationship between the neural code and behavior.

Feature detection is a process by which the nervous system sorts or filters complex natural stimuli in order to extract behaviorally relevant cues that have a high probability of being associated with important objects or organisms in their environment, as opposed to irrelevant background or noise.

Chronostasis is a type of temporal illusion in which the first impression following the introduction of a new event or task-demand to the brain can appear to be extended in time. For example, chronostasis temporarily occurs when fixating on a target stimulus, immediately following a saccade. This elicits an overestimation in the temporal duration for which that target stimulus was perceived. This effect can extend apparent durations by up to half a second and is consistent with the idea that the visual system models events prior to perception.

Neural decoding is a neuroscience field concerned with the hypothetical reconstruction of sensory and other stimuli from information that has already been encoded and represented in the brain by networks of neurons. Reconstruction refers to the ability of the researcher to predict what sensory stimuli the subject is receiving based purely on neuron action potentials. Therefore, the main goal of neural decoding is to characterize how the electrical activity of neurons elicit activity and responses in the brain.

<span class="mw-page-title-main">Conspecific song preference</span>

Conspecific song preference is the ability songbirds require to distinguish conspecific song from heterospecific song in order for females to choose an appropriate mate, and for juvenile males to choose an appropriate song tutor during vocal learning. Researchers studying the swamp sparrow have demonstrated that young birds are born with this ability, because juvenile males raised in acoustic isolation and tutored with artificial recordings choose to learn only songs that contain their own species' syllables. Studies conducted at later life stages indicate that conspecific song preference is further refined and strengthened throughout development as a function of social experience. The selective response properties of neurons in the songbird auditory pathway has been proposed as the mechanism responsible for both the innate and acquired components of this preference.

Sensory maps and brain development is a concept in neuroethology that links the development of the brain over an animal’s lifetime with the fact that there is spatial organization and pattern to an animal’s sensory processing. Sensory maps are the representations of sense organs as organized maps in the brain, and it is the fundamental organization of processing. Sensory maps are not always close to an exact topographic projection of the senses. The fact that the brain is organized into sensory maps has wide implications for processing, such as that lateral inhibition and coding for space are byproducts of mapping. The developmental process of an organism guides sensory map formation; the details are yet unknown. The development of sensory maps requires learning, long term potentiation, experience-dependent plasticity, and innate characteristics. There is significant evidence for experience-dependent development and maintenance of sensory maps, and there is growing evidence on the molecular basis, synaptic basis and computational basis of experience-dependent development.

Biased competition theory advocates the idea that each object in the visual field competes for cortical representation and cognitive processing. This theory suggests that the process of visual processing can be biased by other mental processes such as bottom-up and top-down systems which prioritize certain features of an object or whole items for attention and further processing. Biased competition theory is, simply stated, the competition of objects for processing. This competition can be biased, often toward the object that is currently attended in the visual field, or alternatively toward the object most relevant to behavior.

Surround suppression is where the relative firing rate of a neuron may under certain conditions decrease when a particular stimulus is enlarged. It has been observed in electrophysiology studies of the brain and has been noted in many sensory neurons, most notably in the early visual system. Surround suppression is defined as a reduction in the activity of a neuron in response to a stimulus outside its classical receptive field.

Ilana B. Witten is an American neuroscientist and professor of psychology and neuroscience at Princeton University. Witten studies the mesolimbic pathway, with a focus on the striatal neural circuit mechanisms driving reward learning and decision making.

<span class="mw-page-title-main">Laura Busse</span> German neuroscientist

Laura Busse is a German neuroscientist and professor of Systemic Neuroscience within the Division of Neurobiology at the Ludwig Maximilian University of Munich. Busse's lab studies context-dependent visual processing in mouse models by performing large scale in vivo electrophysiological recordings in the thalamic and cortical circuits of awake and behaving mice.

References

  1. Samuels, Richard (2009). "Magical Number Two, plus or Minus: Dual-Process Theory as a Theory of Cognitive Kinds. Oxford Scholarship.” Oxford Scholarship Online: Oxford University Press. pp. Chapter 6.
  2. Budai, D. (Mar 1994). "A computer-controlled system for post-stimulus time histogram and wind-up studies". J Neurosci Methods. 51 (2): 205–11. doi:10.1016/0165-0270(94)90012-4. PMID   8051951. S2CID   3790772.
  3. Theunissen, FE.; David, SV.; Singh, NC.; Hsu, A.; Vinje, WE.; Gallant, JL. (Aug 2001). "Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli" (PDF). Network. 12 (3): 289–316. doi:10.1080/net.12.3.289.316. PMID   11563531. S2CID   199667772.
  4. Crick, F.; Koch, C. (Mar 1998). "Consciousness and neuroscience". Cereb Cortex. 8 (2): 97–107. doi: 10.1093/cercor/8.2.97 . PMID   9542889.