Neurointensive care

Last updated

Neurocritical care (or neurointensive care) is a medical field that treats life-threatening diseases of the nervous system and identifies, prevents, and treats secondary brain injury.

Contents

Neurocritical care
An intensive care unit in a hospital. Wellcome L0075034.jpg
An intensive care unit in a hospital
System Nervous system
Significant diseases stroke, seizure, epilepsy, aneurysms, Traumatic brain injury, spinal cord injury, status epilepticus, Cerebral edema, encephalitis, meningitis, brain tumor, respiratory failure secondary to neuromuscular disease.
Significant tests Computed axial tomography, MRI scan, Lumbar puncture
Specialistneurointensivists, neurosurgeons

History

Children's ward at Rancho Los Amigos Hospital in 1954, showing more than 100 persons being helped to breathe by the Iron lung Iron Lung ward-Rancho Los Amigos Hospital.gif
Children's ward at Rancho Los Amigos Hospital in 1954, showing more than 100 persons being helped to breathe by the Iron lung

There have been many attempts to manage head injuries throughout history including trepanned skulls found from ancient Egypt and descriptions of treatments to decrease brain swelling in ancient Greek text. [1] Intensive care begin with centers to treat the poliomyelitis outbreak during the mid-twentieth century. [2] These early respiratory care units utilized a negative and positive pressure unit called the "Iron Lung" to aid patients in respiration and greatly decreased the mortality rate of polio. [1] Dr. Bjørn Aage Ibsen, a physician in Denmark, "birthed the intensive care unit", when he used tracheostomy and positive pressure manual ventilation to keep polio patients alive in the setting of an influx of patients and limited resources (only one iron Lung). [2]

Walter Edward Dandy (April 6, 1886 - April 19, 1946) was an American neurosurgeon and scientist. Walter Dandy, ca. 1915.jpg
Walter Edward Dandy (April 6, 1886 – April 19, 1946) was an American neurosurgeon and scientist.

The first neurological intensive care unit was created by Dr. Dandy Walker at Johns Hopkins in 1929. [1] Dr. Walker realized that some surgical patient could use specialized postoperative neurosurgical monitoring and treatment. The unit Dr. Walker created showed a benefit to postoperative patients, than neurologic patients came to the unit. Dr. Safar created the first intensive care unit in the United States in Baltimore in the 1950s. [1] In the 1970s, the benefit of specialized care in respiratory and cardiac ICUs led to the Society of Critical Care medicine being formed. This body created standards for extensive, difficult medical problems and treatments. Over time the need for specialized monitoring and treatments led to neurologic intensive care units.

Modern neurocritical care began to develop in the 1980s. The Neurocritical Care Society was founded in 2002. In 2005, neurocritical care was recognized as a neurological subspecialty. [1]

Scope

The doctors who practice this type of medicine are called neurointensivists, and can have medical training in many fields, including neurology, anesthesiology, emergency medicine, internal medicine, or neurosurgery. Common diseases treated in neurointensive care units include strokes, ruptured aneurysms, brain and spinal cord injury from trauma, seizures (especially those that last for a long period of time- status epilepticus, and/or involve trauma to the patient, i.e., due to a stroke or a fall), swelling of the brain (Cerebral edema), infections of the brain (encephalitis) and the brain's or spine's meninges (meningitis), brain tumors (especially malignant cases; with neurological oncology), and weakness of the muscles required to breathe (such as the diaphragm). Besides dealing with critical illness of the nervous system, neurointensivists also treat the medical complications that may occur in their patients, including those of the heart, lung, kidneys, or any other body system, including treatment of infections.

Neurointensive care centers

Neurological Intensive care units are specialized units in select tertiary care centers that specialized in the care of critical ill neurological and post and pre-op neurosurgical patients. The goal of NICUs are to provide early and aggressive medical interventions including managing pain, airways, ventilation, anticoagulation, elevated ICP, cardiovascular stability and secondary brain injury. Admission criteria includes: Impaired consciousness, impaired ability to protect airway, progressive respiratory weakness, need for mechanical ventilation, seizure, Radiologic evidence of elevated ICP, monitoring of neurologic function in patients that are critically ill. Neuro-ICU have been seeing increasing use at Tertiary referral hospital. One of the main reasons why Neuro-ICUs have seen increased use is the use of therapeutic hypothermia which has been shown to improve long-term neurological outcomes following cardiac arrest. [3]

Neurointensive care team

Most neurocritical care units are a collaborative effort between neurointensivists, neurosurgeons, neurologists, radiologists, pharmacists, physician extenders (such as nurse practitioners or physician assistants), critical care nurses, respiratory therapists, registered dietitians, rehabilitation therapists, and social workers who all work together in order to provide coordinated care for the critically ill neurologic patient.

Neurointensive care nursing

Patients in the neurointensive care units (NICU) are vulnerable due to their primary injury, and in need of help with all their personal hygiene. When planning for nursing interventions it is beneficial to be aware of the patient’s intracranial adaptive capacity, i.e., intracranial compliance, to avoid the development of elevated ICP. All nursing interventions is performed with the aim of benefit for the patient, such as hygienic interventions, preventing pressure ulcers, surgery wound management, endotracheal suctioning when artificial ventilation is needed, among other things. Though, nursing interventions might as well be stressful, and can result in high ICP. Therefore, it is the nurse’s obligation to plan for the interventions so that a balance is achieved between the benefits for the patient’s wellbeing and the risk of raised ICP, which might cause secondary insults. High ICP can be prevented by giving extra sedation before intervention, optimizing the patients position with a raised head and stretched neck to avoid venous stasis. When ICP is > 15 mmHg only the most important interventions are to be performed, to minimize the probabilities of secondary insults. [4]

Neurointensive care procedures

Hypothermia : One third to half of people with coronary artery disease will have an episode where their heart stops. Of the patients who have their heart stopped seven to thirty percent leave the hospital with good neurological outcome (conscious, normal brain function, alert, capable of normal life).[ citation needed ] Lowering patients body temperature between 32 -34 degrees within six hours of arriving at the hospital doubles the patients with no significant brain damage compared to no cooling and increases survival of patients. [5]

ICU Monitor (front) ICU Monitor (front).jpg
ICU Monitor (front)

Basic life support monitoring: Electrocardiography, pulse oximetry, blood pressure, assessment of comatose patients. [6]

Neurological monitoring: Serial neurologic examination, assessment of comatose patients (Glasgow Coma Scale plus pupil or four score), ICP (subarachnoid hemorrhages, TBI, Hydrocephalus, Stroke, CNS infection, Hepatic failure), multimodality monitoring to monitor disease and prevent secondary injury in states that are insensitive to neurological exam or conditions confounded by sedation, neuromuscular blockade and coma.

Intracranial pressure (ICP) management: Ventricular catheter to monitor Brain oxygen and concentrations of glucose and PH. With treatment options of Hypertonic serum, barbiturates, hypothermia and decompressive hemicraniectomy

Common neurointensive care illnesses and treatments

Traumatic brain injury : Sedation, ICP monitoring and management, Decompressive Craniectomy, Hyperosmolar therapy and maintain hemodynamic stability.

MCA-Stroke-Brain-Human-2 MCA-Stroke-Brain-Human-2.JPG
MCA-Stroke-Brain-Human-2

Stroke : Airway management, Maintenance of blood pressure and cerebral perfusion, intravenous fluid management, Temperature control, prophylaxis against seizures, nutrition, ICP management and treatment of medical complications. [7]

Subarachnoid hemorrhage : Find the cause of hemorrhage, treat aneurysm or arteriovenous malformation if necessary, monitor for clinical deterioration, manage systemic complications and maintain cerebral perfusion pressure and prevent vasospasm and bridge patient to angiographic clipping. [7]

Status epilepticus : Termination of seizures, prevention of seizure recurrence, treatment of cause of seizure, management of complications, monitoring of hemodynamic stability and continuous Electroencephalography (EEG). [8]

Meningitis : Empirical treatment with antibiotics and maintain hemodynamic stability. [7]

Encephalitis : Airway protection, monitoring of ICP, treatment of seizures if necessary, and sedation if patient is agitated and virial testing hemodynamic stability. [7]

Acute parainfectious inflammatory encephalopathy (Acute disseminated encephalomyelitis (ADEM) and Acute hemorrhagic leucoencephalitis (AHL)): high dose corticosteroids, monitoring of hemodynamic stability. [7]

Multiple sclerosis, Autonomic neuropathy, spinal cord lesion and neuromuscular disease causing respiratory failure : Monitor respiration and respiratory assistance, if necessary to maintain hemodynamic stability. [7]

Tissue plasminogen activator : Monitor patient who receive TPA for 24 hours for brain bleeds.

Spinal cord injury : immobilization, airway protection and oxygenation, management of spinal chock and cardiovascular effects. [9]

See also

Related Research Articles

<span class="mw-page-title-main">Mechanical ventilation</span> Method to mechanically assist or replace spontaneous breathing

Mechanical ventilation, assisted ventilation or intermittent mandatory ventilation (IMV) is the medical term for using a machine called a ventilator to fully or partially provide artificial ventilation. Mechanical ventilation helps move air into and out of the lungs, with the main goal of helping the delivery of oxygen and removal of carbon dioxide. Mechanical ventilation is used for many reasons, including to protect the airway due to mechanical or neurologic cause, to ensure adequate oxygenation, or to remove excess carbon dioxide from the lungs. Various healthcare providers are involved with the use of mechanical ventilation and people who require ventilators are typically monitored in an intensive care unit.

<span class="mw-page-title-main">Intensive care medicine</span> Medical care subspecialty, treating critically ill

Intensive care medicine, also called critical care medicine, is a medical specialty that deals with seriously or critically ill patients who have, are at risk of, or are recovering from conditions that may be life-threatening. It includes providing life support, invasive monitoring techniques, resuscitation, and end-of-life care. Doctors in this specialty are often called intensive care physicians, critical care physicians or intensivists.

<span class="mw-page-title-main">Cerebral edema</span> Excess accumulation of fluid (edema) in the intracellular or extracellular spaces of the brain

Cerebral edema is excess accumulation of fluid (edema) in the intracellular or extracellular spaces of the brain. This typically causes impaired nerve function, increased pressure within the skull, and can eventually lead to direct compression of brain tissue and blood vessels. Symptoms vary based on the location and extent of edema and generally include headaches, nausea, vomiting, seizures, drowsiness, visual disturbances, dizziness, and in severe cases, coma and death.

<span class="mw-page-title-main">Battlefield medicine</span> Treatment of wounded combatants and non-combatants in or near an area of combat

Battlefield medicine, also called field surgery and later combat casualty care, is the treatment of wounded combatants and non-combatants in or near an area of combat. Civilian medicine has been greatly advanced by procedures that were first developed to treat the wounds inflicted during combat. With the advent of advanced procedures and medical technology, even polytrauma can be survivable in modern wars. Battlefield medicine is a category of military medicine.

<span class="mw-page-title-main">Intracranial pressure</span> Pressure exerted by fluids inside the skull and on the brain

Intracranial pressure (ICP) is the pressure exerted by fluids such as cerebrospinal fluid (CSF) inside the skull and on the brain tissue. ICP is measured in millimeters of mercury (mmHg) and at rest, is normally 7–15 mmHg for a supine adult. The body has various mechanisms by which it keeps the ICP stable, with CSF pressures varying by about 1 mmHg in normal adults through shifts in production and absorption of CSF.

<span class="mw-page-title-main">Respiratory arrest</span> Medical condition

Respiratory arrest is a medical condition caused by apnea or respiratory dysfunction severe enough that it will not sustain the body. Prolonged apnea refers to a patient who has stopped breathing for a long period of time. If the heart muscle contraction is intact, the condition is known as respiratory arrest. An abrupt stop of pulmonary gas exchange lasting for more than five minutes may permanently damage vital organs, especially the brain. Lack of oxygen to the brain causes loss of consciousness. Brain injury is likely if respiratory arrest goes untreated for more than three minutes, and death is almost certain if more than five minutes.

<span class="mw-page-title-main">Traumatic brain injury</span> Injury of the brain from an external source

A traumatic brain injury (TBI), also known as an intracranial injury, is an injury to the brain caused by an external force. TBI can be classified based on severity ranging from mild traumatic brain injury (mTBI/concussion) to severe traumatic brain injury. TBI can also be characterized based on mechanism or other features. Head injury is a broader category that may involve damage to other structures such as the scalp and skull. TBI can result in physical, cognitive, social, emotional and behavioral symptoms, and outcomes can range from complete recovery to permanent disability or death.

An induced coma – also known as a medically induced coma (MIC), barbiturate-induced coma, or drug-induced coma – is a temporary coma brought on by a controlled dose of an anesthetic drug, often a barbiturate such as pentobarbital or thiopental. Other intravenous anesthetic drugs such as midazolam or propofol may be used.

<span class="mw-page-title-main">Status epilepticus</span> Medical condition

Status epilepticus (SE), or status seizure, is a medical condition consisting of a single seizure lasting more than 5 minutes, or 2 or more seizures within a 5-minute period without the person returning to normal between them. Previous definitions used a 30-minute time limit. The seizures can be of the tonic–clonic type, with a regular pattern of contraction and extension of the arms and legs, or of types that do not involve contractions, such as absence seizures or complex partial seizures. Status epilepticus is a life-threatening medical emergency, particularly if treatment is delayed.

<span class="mw-page-title-main">Intracerebral hemorrhage</span> Type of intracranial bleeding that occurs within the brain tissue itself

Intracerebral hemorrhage (ICH), also known as cerebral bleed, intraparenchymal bleed, and haemorrhagic stroke, is a sudden bleeding into the tissues of the brain, into its ventricles, or into both. An ICH is one kind of bleeding within the skull and one kind of stroke. Symptoms can include headache, one-sided weakness, vomiting, seizures, decreased level of consciousness, and neck stiffness. Often, symptoms get worse over time. Fever is also common.

<span class="mw-page-title-main">Osmotherapy</span> Medical treatment for cerebral edema

Osmotherapy is the use of osmotically active substances to reduce the volume of intracranial contents. Osmotherapy serves as the primary medical treatment for cerebral edema. The primary purpose of osmotherapy is to improve elasticity and decrease intracranial volume by removing free water, accumulated as a result of cerebral edema, from brain's extracellular and intracellular space into vascular compartment by creating an osmotic gradient between the blood and brain. Normal serum osmolality ranges from 280 to 290 mOsm/kg and serum osmolality to cause water removal from brain without much side effects ranges from 300 to 320 mOsm/kg. Usually, 90 mL of space is created in the intracranial vault by 1.6% reduction in brain water content. Osmotherapy has cerebral dehydrating effects. The main goal of osmotherapy is to decrease intracranial pressure (ICP) by shifting excess fluid from brain. This is accomplished by intravenous administration of osmotic agents which increase serum osmolality in order to shift excess fluid from intracellular or extracellular space of the brain to intravascular compartment. The resulting brain shrinkage effectively reduces intracranial volume and decreases ICP.

<span class="mw-page-title-main">Intraventricular hemorrhage</span> Medical condition

Intraventricular hemorrhage (IVH), also known as intraventricular bleeding, is a bleeding into the brain's ventricular system, where the cerebrospinal fluid is produced and circulates through towards the subarachnoid space. It can result from physical trauma or from hemorrhagic stroke.

Targeted temperature management (TTM) previously known as therapeutic hypothermia or protective hypothermia is an active treatment that tries to achieve and maintain a specific body temperature in a person for a specific duration of time in an effort to improve health outcomes during recovery after a period of stopped blood flow to the brain. This is done in an attempt to reduce the risk of tissue injury following lack of blood flow. Periods of poor blood flow may be due to cardiac arrest or the blockage of an artery by a clot as in the case of a stroke.

The Brain Trauma Foundation (BTF) was founded in 1986 to develop research on traumatic brain injury (TBI). Since its formation the foundation's mission has expanded to improving the outcome of TBI patients nationwide through working to implement evidence-based guidelines for prehospital and in-hospital care, quality-improvement programs, and coordinating educational programs for medical professionals.

<span class="mw-page-title-main">External ventricular drain</span> Medical device

An external ventricular drain (EVD), also known as a ventriculostomy or extraventricular drain, is a device used in neurosurgery to treat hydrocephalus and relieve elevated intracranial pressure when the normal flow of cerebrospinal fluid (CSF) inside the brain is obstructed. An EVD is a flexible plastic catheter placed by a neurosurgeon or neurointensivist and managed by intensive care unit (ICU) physicians and nurses. The purpose of external ventricular drainage is to divert fluid from the ventricles of the brain and allow for monitoring of intracranial pressure. An EVD must be placed in a center with full neurosurgical capabilities, because immediate neurosurgical intervention can be needed if a complication of EVD placement, such as bleeding, is encountered.

The following outline is provided as an overview of and topical guide to emergency medicine:

The Neurocritical Care Society (NCS) is an international, multidisciplinary medical society first established in 2002. The Society is dedicated to improving the care and outcomes of patients with life-threatening neurologic illnesses in the intensive care unit. Common illnesses requiring neurocritical care include ischemic stroke, subarachnoid hemorrhage, intracranial hemorrhage, traumatic brain and spinal cord injury, coma, and status epilepticus. Its members are health professionals providing care to critically ill and injured patients. The Society supports research and education, and advocates on issues related to neurointensive care, neurocritical care, and general critical care.

Clinicians routinely check the pupils of critically injured and ill patients to monitor neurological status. However, manual pupil measurements have been shown to be subjective, inaccurate, and not repeatable or consistent. Automated assessment of the pupillary light reflex has emerged as an objective means of measuring pupillary reactivity across a range of neurological diseases, including stroke, traumatic brain injury and edema, tumoral herniation syndromes, and sports or war injuries. Automated pupillometers are used to assess an array of objective pupillary variables including size, constriction velocity, latency, and dilation velocity, which are normalized and standardized to compute an indexed score such as the Neurological Pupil index (NPi).

Sherry Hsiang-Yi Chou is a Canadian neurologist and an Associate Professor of Neurology and Chief of Neurocritical Care at the Northwestern University Feinberg School of Medicine and Northwestern Medicine. She is a Fellow of the Neurocritical Care Society and the Society of Critical Care Medicine. During the COVID-19 pandemic Chou assembled a worldwide team of physicians and scientists to better understand the neurological impacts of COVID-19, forming the Global Consortium Study of Neurologic Dysfunction in COVID-19 (GCS-NeuroCOVID). The first report of this large, multicenter, multicontinent consortium found that neurological manifestations are present in 8 out of 10 adult patients hospitalized with COVID-19 and are associated with increased mortality.

Stephan A. Mayer is an American neurologist and critical care physician who currently serves as Director of Neurocritical Care and Emergency Neurology Services for the Westchester Medical Center Health System. Mayer is most noted for his research in subarachnoid and intracerebral hemorrhage, acute ischemic stroke, cardiac arrest, coma, status epilepticus, brain multimodality monitoring, therapeutic temperature modulation, and outcomes after severe brain injury. He has gained media attention for popularizing the concept that physicians have historically underestimated the brain’s resilience and capacity for recovery. He has authored over 400 original research publications, 200 chapters and review articles, and 370 abstracts.

References

  1. 1 2 3 4 5 Korbakis G, Bleck T (October 2014). "The evolution of neurocritical care". Crit Care Clin. 30 (4): 657–71. doi:10.1016/j.ccc.2014.06.001. PMID   25257734.
  2. 1 2 Wijdicks EF (2017). "The history of neurocritical care". Handb Clin Neurol. Handbook of Clinical Neurology. 140: 3–14. doi:10.1016/B978-0-444-63600-3.00001-5. ISBN   9780444636003. PMID   28187805.
  3. Zacharia BE, Vaughan KA, Bruce SS, Grobelny BT, Narula R, Khandji J, Carpenter AM, Hickman ZL, Ducruet AF, Connolly ES (December 2012). "Epidemiological trends in the neurological intensive care unit from 2000 to 2008". J Clin Neurosci. 19 (12): 1668–72. doi:10.1016/j.jocn.2012.04.011. PMID   23062793. S2CID   23476865.
  4. Neurointensive care. Hemanshu Prabhakar (First ed.). New Delhi. 2019. ISBN   978-0-19-948143-9. OCLC   1085942911.{{cite book}}: CS1 maint: location missing publisher (link) CS1 maint: others (link)
  5. Arrich, Jasmin; Schütz, Nikola; Oppenauer, Julia; Vendt, Janne; Holzer, Michael; Havel, Christof; Herkner, Harald (2023-05-22). "Hypothermia for neuroprotection in adults after cardiac arrest". The Cochrane Database of Systematic Reviews. 5 (5): CD004128. doi:10.1002/14651858.CD004128.pub5. ISSN   1469-493X. PMC   10202224 . PMID   37217440.
  6. Le Roux P, Menon DK, Citerio G, Vespa P, Bader MK, Brophy GM, et al. (September 2014). "Consensus summary statement of the International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care : a statement for healthcare professionals from the Neurocritical Care Society and the European Society of Intensive Care Medicine". Intensive Care Med. 40 (9): 1189–209. doi: 10.1007/s00134-014-3369-6 . PMID   25138226. S2CID   4673528.
  7. 1 2 3 4 5 6 Howard RS, Kullmann DM, Hirsch NP (September 2003). "Admission to neurological intensive care: who, when, and why?". J. Neurol. Neurosurg. Psychiatry. 74 Suppl 3 (90003): iii2–9. doi:10.1136/jnnp.74.suppl_3.iii2. PMC   1765634 . PMID   12933908.
  8. Datar S (November 2017). "New Developments in Refractory Status Epilepticus". Neurol Clin. 35 (4): 751–760. doi:10.1016/j.ncl.2017.06.010. PMID   28962812.
  9. Neurointensive care. Hemanshu Prabhakar (First ed.). New Delhi. 2019. ISBN   978-0-19-948143-9. OCLC   1085942911.{{cite book}}: CS1 maint: location missing publisher (link) CS1 maint: others (link)