Meiocyte

Last updated

A meiocyte is a type of cell that differentiates into a gamete through the process of meiosis. Through meiosis, the diploid meiocyte divides into four genetically different haploid gametes. [1] [2] The control of the meiocyte through the meiotic cell cycle varies between different groups of organisms.

Contents

Yeast

The process of meiosis has been extensively studied in model organisms, such as yeast. [1] [3] Because of this, the way in which the meiocyte is controlled through the meiotic cell cycle is best understood in this group of organisms. [3] A yeast meiocyte that is undergoing meiosis must pass through a number of checkpoints in order to complete the cell cycle. [3] If a meiocyte divides and this division results in a mutant cell, the mutant cell will undergo apoptosis and, therefore, will not complete the cycle. [3]

In natural populations of the yeast Saccharomyces cerevisiae , diploid meiocytes produce haploid cells that then mainly undergo either clonal reproduction, or selfing (intratetrad mating) to form progeny diploid meiocytes [4] . When the ancestry of natural S. cerevisiae strains was analyzed, it was determined that formation of diploid meiocytes by outcrossing (as opposed to inbreeding or selfing) occurs only about once every 50,000 cell divisions [5] . These findings suggest that the principal adaptive function of meiocytes may not be related to the production of genetic diversity that occurs infrequently by outcrossing, but rather may be mainly related to recombinational repair of DNA damage (that can occur in meiocytes at each mating cycle) [6] .

Animal

The animal meiotic cell cycle is very much like that of yeast. Checkpoints within the animal meiotic cell cycle serve to stop mutant meiocytes from progressing further within the cycle. [3] Like yeast meiocytes, if an animal meiocyte differentiates into a mutant cell, the cell will undergo apoptosis. [3]

Plant

The meiotic cell cycle in plants is very different from that of yeast and animal cells. In plant studies, mutations have been identified that affect meiocyte formation or the process of meiosis. [3] Most meiotic mutant plant cells complete the meiotic cell cycle and produce abnormal microspores. [3] It appears that plant meiocytes do not undergo any checkpoints within the meiotic cell cycle and can, thus, proceed through the cycle regardless of any defect. [3] By studying the abnormal microspores, the progression of the plant meiocyte through the meiotic cell cycle can be investigated further. [3] [7]

Mammalian infertility

Researching meiosis in mammals plays a crucial role in understanding human infertility. Meiosis research within mammal populations is restricted due to the fundamental nature of meiosis. [2] In order to study mammalian meiosis, a culture technique that would allow for this process to be observed live under a microscope would need to be identified. [2] By viewing live mammalian meiosis, one can observe the behavior of mutant meiocytes that may possibly compromise infertility within the particular organism. [2] However, because of the size and small number of meiocytes, collecting samples of these cells has been difficult and is currently being researched. [1]

Related Research Articles

<span class="mw-page-title-main">Gametophyte</span> Haploid stage in the life cycle of plants and algae

A gametophyte is one of the two alternating multicellular phases in the life cycles of plants and algae. It is a haploid multicellular organism that develops from a haploid spore that has one set of chromosomes. The gametophyte is the sexual phase in the life cycle of plants and algae. It develops sex organs that produce gametes, haploid sex cells that participate in fertilization to form a diploid zygote which has a double set of chromosomes. Cell division of the zygote results in a new diploid multicellular organism, the second stage in the life cycle known as the sporophyte. The sporophyte can produce haploid spores by meiosis that on germination produce a new generation of gametophytes.

<span class="mw-page-title-main">Meiosis</span> Cell division producing haploid gametes

Meiosis is a special type of cell division of germ cells in sexually-reproducing organisms that produces the gametes, such as sperm or egg cells. It involves two rounds of division that ultimately result in four cells with only one copy of each chromosome (haploid). Additionally, prior to the division, genetic material from the paternal and maternal copies of each chromosome is crossed over, creating new combinations of code on each chromosome. Later on, during fertilisation, the haploid cells produced by meiosis from a male and female will fuse to create a cell with two copies of each chromosome again, the zygote.

<span class="mw-page-title-main">Ploidy</span> Number of sets of chromosomes in a cell

Ploidy is the number of complete sets of chromosomes in a cell, and hence the number of possible alleles for autosomal and pseudoautosomal genes. Sets of chromosomes refer to the number of maternal and paternal chromosome copies, respectively, in each homologous chromosome pair, which chromosomes naturally exist as. Somatic cells, tissues, and individual organisms can be described according to the number of sets of chromosomes present : monoploid, diploid, triploid, tetraploid, pentaploid, hexaploid, heptaploid or septaploid, etc. The generic term polyploid is often used to describe cells with three or more chromosome sets.

<span class="mw-page-title-main">Alternation of generations</span> Reproductive cycle of plants and algae

Alternation of generations is the predominant type of life cycle in plants and algae. In plants both phases are multicellular: the haploid sexual phase – the gametophyte – alternates with a diploid asexual phase – the sporophyte.

<i>Saccharomyces cerevisiae</i> Species of yeast

Saccharomyces cerevisiae is a species of yeast. The species has been instrumental in winemaking, baking, and brewing since ancient times. It is believed to have been originally isolated from the skin of grapes. It is one of the most intensively studied eukaryotic model organisms in molecular and cell biology, much like Escherichia coli as the model bacterium. It is the microorganism behind the most common type of fermentation. S. cerevisiae cells are round to ovoid, 5–10 μm in diameter. It reproduces by budding.

<span class="mw-page-title-main">Gametogenesis</span> Biological process

Gametogenesis is a biological process by which diploid or haploid precursor cells undergo cell division and differentiation to form mature haploid gametes. Depending on the biological life cycle of the organism, gametogenesis occurs by meiotic division of diploid gametocytes into various gametes, or by mitosis. For example, plants produce gametes through mitosis in gametophytes. The gametophytes grow from haploid spores after sporic meiosis. The existence of a multicellular, haploid phase in the life cycle between meiosis and gametogenesis is also referred to as alternation of generations.

<span class="mw-page-title-main">Biological life cycle</span> Series of stages of an organism

In biology, a biological life cycle is a series of changes in form that an organism undergoes, returning to the starting state. "The concept is closely related to those of the life history, development and ontogeny, but differs from them in stressing renewal." Transitions of form may involve growth, asexual reproduction, or sexual reproduction.

<span class="mw-page-title-main">Mating</span> Process of pairing in biology

In biology, mating is the pairing of either opposite-sex or hermaphroditic organisms for the purposes of sexual reproduction. Fertilization is the fusion of two gametes. Copulation is the union of the sex organs of two sexually reproducing animals for insemination and subsequent internal fertilization. Mating may also lead to external fertilization, as seen in amphibians, fishes and plants. For most species, mating is between two individuals of opposite sexes. However, for some hermaphroditic species, copulation is not required because the parent organism is capable of self-fertilization (autogamy); for example, banana slugs.

<span class="mw-page-title-main">Karyogamy</span> Fusion of the nuclei of two haploid eukaryotic cells

Karyogamy is the final step in the process of fusing together two haploid eukaryotic cells, and refers specifically to the fusion of the two nuclei. Before karyogamy, each haploid cell has one complete copy of the organism's genome. In order for karyogamy to occur, the cell membrane and cytoplasm of each cell must fuse with the other in a process known as plasmogamy. Once within the joined cell membrane, the nuclei are referred to as pronuclei. Once the cell membranes, cytoplasm, and pronuclei fuse, the resulting single cell is diploid, containing two copies of the genome. This diploid cell, called a zygote or zygospore can then enter meiosis, or continue to divide by mitosis. Mammalian fertilization uses a comparable process to combine haploid sperm and egg cells (gametes) to create a diploid fertilized egg.

Haploidisation is the process of halving the chromosomal content of a cell, producing a haploid cell. Within the normal reproductive cycle, haploidisation is one of the major functional consequences of meiosis, the other being a process of chromosomal crossover that mingles the genetic content of the parental chromosomes. Usually, haploidisation creates a monoploid cell from a diploid progenitor, or it can involve halving of a polyploid cell, for example to make a diploid potato plant from a tetraploid lineage of potato plants.

Heterothallic species have sexes that reside in different individuals. The term is applied particularly to distinguish heterothallic fungi, which require two compatible partners to produce sexual spores, from homothallic ones, which are capable of sexual reproduction from a single organism.

<span class="mw-page-title-main">Mating of yeast</span> Biological process

The yeast Saccharomyces cerevisiae is a simple single-celled eukaryote with both a diploid and haploid mode of existence. The mating of yeast only occurs between haploids, which can be either the a or α (alpha) mating type and thus display simple sexual differentiation. Mating type is determined by a single locus, MAT, which in turn governs the sexual behaviour of both haploid and diploid cells. Through a form of genetic recombination, haploid yeast can switch mating type as often as every cell cycle.

<span class="mw-page-title-main">Mating in fungi</span> Combination of genetic material between compatible mating types

Fungi are a diverse group of organisms that employ a huge variety of reproductive strategies, ranging from fully asexual to almost exclusively sexual species. Most species can reproduce both sexually and asexually, alternating between haploid and diploid forms. This contrasts with many eukaryotes such as mammals, where the adults are always diploid and produce haploid gametes which combine to form the next generation. In fungi, both haploid and diploid forms can reproduce – haploid individuals can undergo asexual reproduction while diploid forms can produce gametes that combine to give rise to the next generation.

Mating types are the microorganism equivalent to sexes in multicellular lifeforms and are thought to be the ancestor to distinct sexes. They also occur in macro-organisms such as fungi.

Sporogenesis is the production of spores in biology. The term is also used to refer to the process of reproduction via spores. Reproductive spores were found to be formed in eukaryotic organisms, such as plants, algae and fungi, during their normal reproductive life cycle. Dormant spores are formed, for example by certain fungi and algae, primarily in response to unfavorable growing conditions. Most eukaryotic spores are haploid and form through cell division, though some types are diploid or dikaryons and form through cell fusion.

<span class="mw-page-title-main">Tetrad (meiosis)</span>

The tetrad is the four spores produced after meiosis of a yeast or other Ascomycota, Chlamydomonas or other alga, or a plant. After parent haploids mate, they produce diploids. Under appropriate environmental conditions, diploids sporulate and undergo meiosis. The meiotic products, spores, remain packaged in the parental cell body to produce the tetrad.

Chromosome segregation is the process in eukaryotes by which two sister chromatids formed as a consequence of DNA replication, or paired homologous chromosomes, separate from each other and migrate to opposite poles of the nucleus. This segregation process occurs during both mitosis and meiosis. Chromosome segregation also occurs in prokaryotes. However, in contrast to eukaryotic chromosome segregation, replication and segregation are not temporally separated. Instead segregation occurs progressively following replication.

<span class="mw-page-title-main">Embryonic sac</span>

A megaspore mother cell, or megasporocyte, is a diploid cell in plants in which meiosis will occur, resulting in the production of four haploid megaspores. At least one of the spores develop into haploid female gametophytes (megagametophytes). The megaspore mother cell arises within the megasporangium tissue.

The origin and function of meiosis are currently not well understood scientifically, and would provide fundamental insight into the evolution of sexual reproduction in eukaryotes. There is no current consensus among biologists on the questions of how sex in eukaryotes arose in evolution, what basic function sexual reproduction serves, and why it is maintained, given the basic two-fold cost of sex. It is clear that it evolved over 1.2 billion years ago, and that almost all species which are descendants of the original sexually reproducing species are still sexual reproducers, including plants, fungi, and animals.

Autogamy, or self-fertilization, refers to the fusion of two gametes that come from one individual. Autogamy is predominantly observed in the form of self-pollination, a reproductive mechanism employed by many flowering plants. However, species of protists have also been observed using autogamy as a means of reproduction. Flowering plants engage in autogamy regularly, while the protists that engage in autogamy only do so in stressful environments.

References

  1. 1 2 3 Libeau, P., Durandet, M., Granier, F., Marquis, C., Berthomé, R., Renou, J. P., Taconnat-Soubirou, L., and Horlow, C. (2011). Gene expression profiling of Arabidopsis meiocytes. Plant Biology13, 784-793.
  2. 1 2 3 4 Roig, I., Brieno-Enriquez, M. A., Caldes, M. G. (2011). Meiosis in a bottle: new approaches to overcome mammalian meiocyte study limitations. Genes2, 152-168.
  3. 1 2 3 4 5 6 7 8 9 10 Yang, X., Makaroff, C. A., and Ma, H. (2003). The Arabidopsis MALE MEIOCYTE DEATH1 gene encodes a PHD-finger protein that is required for male meiosis. The Plant Cell15, 1281-1295.
  4. Katz Ezov T, Chang SL, Frenkel Z, Segrè AV, Bahalul M, Murray AW, Leu JY, Korol A, Kashi Y. Heterothallism in Saccharomyces cerevisiae isolates from nature: effect of HO locus on the mode of reproduction. Mol Ecol. 2010 Jan;19(1):121-31. doi: 10.1111/j.1365-294X.2009.04436.x. Epub 2009 Dec 3. PMID: 20002587; PMCID: PMC3892377
  5. Ruderfer DM, Pratt SC, Seidel HS, Kruglyak L. Population genomic analysis of outcrossing and recombination in yeast. Nat Genet. 2006 Sep;38(9):1077-81. doi: 10.1038/ng1859. Epub 2006 Aug 6. PMID: 16892060
  6. Bernstein H, Byerly HC, Hopf FA, Michod RE. Genetic damage, mutation, and the evolution of sex. Science. 1985 Sep 20;229(4719):1277-81. doi: 10.1126/science.3898363. PMID: 3898363
  7. Wang, D., Skibbe, D. S., and Walbot, V. (2011). Maize csmd1 exhibits pre-meiotic somatic and post-meiotic microspore defects but sustains anther growth. Sex Plant Reprod24, 297-306.