Polar auxin transport

Last updated

Polar auxin transport is the regulated transport of the plant hormone auxin in plants. It is an active process, the hormone is transported in cell-to-cell manner and one of the main features of the transport is its asymmetry and directionality (polarity). The polar auxin transport functions to coordinate plant development; the following spatial auxin distribution underpins most of plant growth responses to its environment and plant growth and developmental changes in general. In other words, the flow and relative concentrations of auxin informs each plant cell where it is located and therefore what it should do or become.

Contents

Chemiosmotic model

Polar auxin transport (PAT) is directional and active flow of auxin molecules through the plant tissues. The flow of auxin molecules through the neighboring cells is driven by carriers (type of membrane transport protein ) in the cell-to-cell fashion (from one cell to other cell and then to the next one) and the direction of the flow is determined by the localization of the carriers on the plasma membrane in the concerned cells.

The transport from cell to the neighboring one is achieved through relatively complex combination of several sub-processes. To explain the mechanism behind unique character of auxin transport through living cell files of the plant, the so-called chemiosmotic model was formulated. [1] [2] [3] [4] The mechanism was first proposed in the seventies by Ruberry and Sheldrake [1] [5] and this visionary [5] prediction was finally proven in the 21st century.

The mechanism below describes the process in which auxin is trapped in the cell by the so-called acid trap and how it can then leave the cell only by activity of specific carriers, which control the directionality of the flow from cells and generally the direction of auxin transport through the whole plant body.

Acid trap

Passive diffusion on a cell membrane. However; in a case of auxins, only the non-dissociated portion of auxin molecules is able to cross the membrane Scheme simple diffusion in cell membrane-en.svg
Passive diffusion on a cell membrane. However; in a case of auxins, only the non-dissociated portion of auxin molecules is able to cross the membrane

As weak acids, the protonation state of auxins is dictated by the pH of the environment; a strongly acidic environment inhibits the forward reaction (dissociation), whereas an alkaline environment strongly favors it (see Henderson-Hasselbalch equation):

The export of auxins from cells is termed auxin efflux and the entry of auxin in to cells is called auxin influx. The first step in polar transport is auxin influx. Auxin enters plant cells by two methods, first by passive diffusion as non-ionized IAA molecule or the protonated form as IAAH across the phospholipid bilayer, or second by active co-transport in the anionic form IAA. As IAAH is lipophilic, it can easily cross the lipid bilayer.

IAAHIAA + H+, where IAAH = indole-3-acetic acid; IAA = its conjugate base

The inside of cells (pH ~ 7) is less acidic than the outside (the apoplast; pH ~ 5.5). So outside the cell a significant portion (17%) [4] of the IAA molecules remain un-dissociated (proton-associated). This portion of auxin molecules is charge-neutral and therefore it is able to diffuse through the lipophilic lipid bilayer (lipid bilayer being constituent of cell membrane) into the cells. [4] Once through the bilayer in the cell, the molecules are exposed to the more basic pH of the cell interior, and there they dissociate almost completely, [4] producing anionic IAA. These chemically polar ions are unable to passively diffuse across the cell membrane and remain trapped inside the cell. [4]

Polarity of auxin export

Once inside the cell, auxin cannot leave the cell on its own by crossing the lipid bilayer. Hence the export of auxin from the cell requires an active transport component in the plasma membrane - i.e. some membrane transport protein. Two protein families: The PIN proteins and ABCB (PGP proteins) transporters function as "auxin efflux carriers" and transport the anionic form of auxin out of the cell. While the PGP auxin efflux carriers are evenly distributed, the PIN proteins normally maintain polar (i.e. asymmetric) localisation on the plasma membrane. That is to say they are most concentrated on one side of the cell. Furthermore, the asymmetrical localisation of the PIN proteins is coordinated between neighbouring cells. As a result, the PIN proteins generate a directional flow of auxin at the tissue and organ scale. This PIN-generated flow is called auxin polar transport. For example, the cells located in the vasculature (at the center) of the root all show PIN1 proteins on their basal membrane only (i.e. on their lower side). As a result, in the root vasculature, auxin is transported directionally from the shoot to the root tip (i.e. downwards).

Role in plant development

Self-organisation of polar auxin transport

See also "Uneven distribution of auxin" and "Organization of the plant" in the main Auxin article

Auxin plays a central role in PIN protein polarity establishment. The regulation of PIN localisation by auxin creates a feedback loop where PIN proteins control the directionality of auxin fluxes, and auxin in turn controls PIN proteins localisation. These interactions between auxin and its own transporters confer to the system self-organizing properties, which explains for instance phyllotaxis (the regular and geometrical arrangements of lateral organ along the stem), the formation of leaf serrations, and the formation of vascular strands. This positive feedback regulation auxin on its own transport also plays an essential role in vascular development, which process is called canalization.

PIN proteins are so named because mutant plants lacking the founding member of this family, PIN1, cannot develop flowers. The formation of flowers is triggered by regularly spaced local auxin accumulation at the surface of the shoot apical meristem and, for this PIN1 is required. As a result, the pin1 mutant plants produce a "pin-like" inflorescence consisting only of a naked stem. This highlights the importance of polar auxin transport in plant development.

Tropisms

Other external and internal signals (e.g. blue light, mechanical stress, gravity or cytokinins) can interfere with PIN protein polarity and therefore with the directionality of auxin polar transport. Because auxin controls cell division and cell elongation, the change of PIN proteins localisation, and the subsequent change in auxin distribution, often lead to a change in the growth pattern.

For instance, the regulation of polar auxin transport is central in a process such as gravitropism. This process, which ensures that the root grows downwards, relies on the redistribution of auxin by the columella cells (the cells located at the very tip of the root). These cells respond to gravity by special organelles, the statoliths, that redistribute auxin from the vasculature to the root epidermis and the lateral root cap. These tissues (which form the external cell layers of the root) transport auxin back to the elongation zone where it regulates cell elongation. When the gravitational gradient is not aligned with the axis of the columella cells (because the root is not vertical), the PIN proteins move to the side of the cell membrane that is gravitationally lowest. This causes more auxin to flow to the lower side of the root. Once in the elongation zone, the extra auxin inhibits cell elongation and cause the root to re-orient downwards.

Similar mechanisms occur in other tropic responses, such as phototropism. [6] The mechanisms were first described by the Cholodny-Went model, proposed in the 1920s by N. Cholodny and Frits Warmolt Went. [7]

Generation of morphogenetic gradients

Polar auxin transport is required for the generation of auxin gradients throughout the plant body. [5] [8] Those gradients have development significances akin to the gradients of morphogens in animal bodies. They are necessary for development, growth and response of any plant organ [8] (such as cotyledons, leaves, roots, flowers or fruits) and response of plant to environmental stimuli known as tropisms. [6]

Regulation

Although the detailed molecular mechanism of PIN proteins polarity establishment remains to be elucidated, many endogenous and exogenous regulators of PIN proteins localisation have been characterised.

Auxin

Most importantly, PIN proteins localisation on the plasma membrane is controlled by auxin. Several mathematical models making different assumptions on the way auxin influences PIN localisation explain different observations. Some models assume PIN proteins polarize towards the neighbouring cell containing the highest cytosolic auxin concentration. These models are called "up-the-gradient" models and explain for instance phyllotaxis. Other models assume that PIN proteins localise on the side of the cell where the efflux of auxin is the highest. These models are called "with-the-flux" models and explain the formation of vascular strands in leaves.

The molecular mechanism responsible for these different behaviours of the system (with-the-flux and up-the-gradient) is not yet fully understood. Noticeably, an auxin receptor protein called ABP1 is thought to play a potentially significant role in the control of PIN proteins polarity by auxin.

Mechanical stress

Mechanical signals have been proposed to regulate PIN polarity.

Vesicle Trafficking

The asymmetrical localisation of PIN efflux carrier protein at the plasma membrane has been shown to involve the localized targeting of vesicles and the local regulation of endocytosis. The latter involves the actin cytoskeleton.

Inhibitors of the transport

In research, 1-N-Naphthylphthalamic acid (NPA) and 2,3,5-triiodobenzoic acid (TIBA) are used as specific inhibitors of the auxin efflux. [9]

Quercetin (a flavonol) and Genistein are naturally-occurring auxin transport inhibitors. [9]

9-Hydroxyfluorene-9-carboxylic acid (HFCA), TIBA, and trans-cinnamic acid (TCA) are also example of Polar Auxin Transport Inhibitors. They prevent the development of the bilateral growth of the plant embryo during the globular stage. All 3 inhibitors induce the formation of fused cotyledons in globular but not heart-shaped embryo.[ citation needed ]

Phosphorylation

Polar auxin transport can be regulated by reversible protein phosphorylation; protein kinases and protein phosphatases mediate the phosphorylation and dephosphorylation, respectively. A study suggests that phosphatase inhibition can alter the activities of acropetal and basipetal auxin transport. With decades of studies, multiple kinases have been reported to phosphorylate PIN proteins, including PINOID, D6PK, PAX, MPK6 and CRK5; and phosphorylated PIN proteins can be oppositely dephosphorylated by Protein Phosphatase 2A (PP2A), Protein Phosphatase 1 (PP1) and PP6. The AGC family of kinases play essential roles in catalyzing PIN phosphorylation and in regulating PIN function. 3'-Phosphoinositide dependent protein kinase 1 (PDK1), also from the AGC family, is a critical activator of AGC kinases and is thus also involved in the regulation of PIN-mediated auxin transport. [10] [11] . PINOID and D6PK share at least three phosphosites (P-sites) at the cytoplasmic loop (also called hydrophilic loop) of long PIN proteins, but their functions are not all the same. both of the two kinases can increase PIN activity via phosphorylation. However, PINOID (non-polar)-mediated phosphorylation also determines the apicobasal polar targeting of PIN proteins, i.e., more phosphorylation, more apical. D6PK and its homologs localize at the basal side of plasma membrane, modulating the rootward auxin fluxes and subsequent developmental processes.

Related Research Articles

Biological membrane Enclosing or separating membrane in organisms acting as selective semi-permeable barrier

A biological membrane, biomembrane or cell membrane is a selectively permeable membrane that separates cell from the external environment or creates intracellular compartments. Biological membranes, in the form of eukaryotic cell membranes, consist of a phospholipid bilayer with embedded, integral and peripheral proteins used in communication and transportation of chemicals and ions. The bulk of lipid in a cell membrane provides a fluid matrix for proteins to rotate and laterally diffuse for physiological functioning. Proteins are adapted to high membrane fluidity environment of lipid bilayer with the presence of an annular lipid shell, consisting of lipid molecules bound tightly to surface of integral membrane proteins. The cell membranes are different from the isolating tissues formed by layers of cells, such as mucous membranes, basement membranes, and serous membranes.

Facilitated diffusion Biological process

Facilitated diffusion is the process of spontaneous passive transport of molecules or ions across a biological membrane via specific transmembrane integral proteins. Being passive, facilitated transport does not directly require chemical energy from ATP hydrolysis in the transport step itself; rather, molecules and ions move down their concentration gradient reflecting its diffusive nature.

In cellular biology, active transport is the movement of molecules across a cell membrane from a region of lower concentration to a region of higher concentration—against the concentration gradient. Active transport requires cellular energy to achieve this movement. There are two types of active transport: primary active transport that uses adenosine triphosphate (ATP), and secondary active transport that uses an electrochemical gradient. An example of active transport in human physiology is the uptake of glucose in the intestines.

Biology is the study of life and its processes. Biologists study all aspects of living things, including all of the many life forms on earth and the processes in them that enable life. These basic processes include the harnessing of energy, the synthesis and duplication of the materials that make up the body, the reproduction of the organism and many other functions. Biology, along with chemistry and physics is one of the major disciplines of natural science.

Index of biochemistry articles Wikipedia index

Biochemistry is the study of the chemical processes in living organisms. It deals with the structure and function of cellular components such as proteins, carbohydrates, lipids, nucleic acids and other biomolecules.

Auxin Class of plant hormones

Auxins are a class of plant hormones with some morphogen-like characteristics. Auxins play a cardinal role in coordination of many growth and behavioral processes in plant life cycles and are essential for plant body development. The Dutch biologist Frits Warmolt Went first described auxins and their role in plant growth in the 1920s. Kenneth V. Thimann (1904-1997) became the first to isolate one of these phytohormones and to determine its chemical structure as indole-3-acetic acid (IAA). Went and Thimann co-authored a book on plant hormones, Phytohormones, in 1937.

A membrane transport protein is a membrane protein involved in the movement of ions, small molecules, and macromolecules, such as another protein, across a biological membrane. Transport proteins are integral transmembrane protein; that is they exist permanently within and span the membrane across which they transport substances. The proteins may assist in the movement of substances by facilitated diffusion or active transport. The two main types of proteins involved in such transport are broadly categorized as either channels or carriers. The solute carriers and atypical SLCs are secondary active or facilitative transporters in humans. Collectively membrane transporters and channels are transportome. Transportomes govern cellular influx and efflux of not only ions and nutrients but drugs as well.

In cellular biology, membrane transport refers to the collection of mechanisms that regulate the passage of solutes such as ions and small molecules through biological membranes, which are lipid bilayers that contain proteins embedded in them. The regulation of passage through the membrane is due to selective membrane permeability - a characteristic of biological membranes which allows them to separate substances of distinct chemical nature. In other words, they can be permeable to certain substances but not to others.

Lateral root smallest part of a plants roots

Lateral roots, emerging from the pericycle, extend horizontally from the primary root (radicle) and overtime makeup the iconic branching pattern of root systems. They contribute to anchoring the plant securely into the soil, increasing water uptake, and facilitates the extraction of nutrients required for the growth and development of the plant. Lateral roots increase the surface area of a plant's root system and can be found in great abundance in several plant species. In some cases, lateral roots have been found to form symbiotic relationships with rhizobia (bacteria) and mycorrhizae (fungi) found in the soil, to further increase surface area and increase nutrient uptake.

Lipid signaling

Lipid signaling, broadly defined, refers to any biological signaling event involving a lipid messenger that binds a protein target, such as a receptor, kinase or phosphatase, which in turn mediate the effects of these lipids on specific cellular responses. Lipid signaling is thought to be qualitatively different from other classical signaling paradigms because lipids can freely diffuse through membranes One consequence of this is that lipid messengers cannot be stored in vesicles prior to release and so are often biosynthesized "on demand" at their intended site of action. As such, many lipid signaling molecules cannot circulate freely in solution but, rather, exist bound to special carrier proteins in serum.

Symporter class of transport proteins

A symporter is an integral membrane protein that is involved in the transport of many differing types of molecules across the cell membrane. The symporter works in the plasma membrane and molecules are transported across the cell membrane at the same time, and is, therefore, a type of cotransporter. The transporter is called a symporter, because the molecules will travel in the same direction in relation to each other. This is in contrast to the antiport transporter. Typically, the ion(s) will move down the electrochemical gradient, allowing the other molecule(s) to move against the concentration gradient. The movement of the ion(s) across the membrane is facilitated diffusion, and is coupled with the active transport of the molecule(s).

<i>alpha</i>-Parinaric acid chemical compound

α-Parinaric acid is a conjugated polyunsaturated fatty acid. Discovered by Tsujimoto and Koyanagi in 1933, it contains 18 carbon atoms and 4 conjugated double bonds. The repeating single bond-double bond structure of α-parinaric acid distinguishes it structurally and chemically from the usual "methylene-interrupted" arrangement of polyunsaturated fatty acids that have double-bonds and single bonds separated by a methylene unit (−CH2−). Because of the fluorescent properties conferred by the alternating double bonds, α-parinaric acid is commonly used as a molecular probe in the study of biomembranes.

Phosphoinositide-dependent kinase-1 protein-coding gene in the species Homo sapiens

In the field of biochemistry, PDPK1 refers to the protein 3-phosphoinositide-dependent protein kinase-1, an enzyme which is encoded by the PDPK1 gene in humans. It is implicated in the development and progression of melanomas.

Cell polarity is a fundamental feature of many types of cells. Epithelial cells are one example of a polarized cell type, featuring distinct 'apical', 'lateral' and 'basal' plasma membrane domains. Epithelial cells connect to one another via their lateral membranes to form epithelial sheets that line cavities and surfaces throughout the animal body. Each plasma membrane domain has a distinct protein composition, giving them distinct properties and allowing directional transport of molecules across the epithelial sheet. How epithelial cells generate and maintain polarity remains unclear, but certain molecules have been found to play a key role.

Phototropism Phototropism is the growth of an organism in response to a light stimulus

Phototropism is the growth of an organism in response to a light stimulus. Phototropism is most often observed in plants, but can also occur in other organisms such as fungi. The cells on the plant that are farthest from the light have a chemical called auxin that reacts when phototropism occurs. This causes the plant to have elongated cells on the furthest side from the light. Phototropism is one of the many plant tropisms or movements which respond to external stimuli. Growth towards a light source is called positive phototropism, while growth away from light is called negative phototropism (skototropism). Most plant shoots exhibit positive phototropism, and rearrange their chloroplasts in the leaves to maximize photosynthetic energy and promote growth. Some vine shoot tips exhibit negative phototropism, which allows them to grow towards dark, solid objects and climb them. The combination of phototropism and gravitropism allow plants to grow in the correct direction.

Cell membrane Biological membrane separating the interior of a cell from its external environment

The cell membrane is the semipermeable membrane of a cell that surrounds and encloses its contents of cytoplasm and nucleoplasm. The cell membrane separates the cell from the surrounding interstitial fluid the main component of the extracellular fluid.

The endocannabinoid transporters (eCBTs) are transport proteins for the endocannabinoids. Most neurotransmitters are water-soluble and require transmembrane proteins to transport them across the cell membrane. The endocannabinoids on the other hand, are non-charged lipids that readily cross lipid membranes. However, since the endocannabinoids are water immiscible, protein transporters have been described that act as carriers to solubilize and transport the endocannabinoids through the aqueous cytoplasm. These include the heat shock proteins (Hsp70s) and fatty acid-binding proteins for anandamide (FABPs). FABPs such as FABP1, FABP3, FABP5, and FABP7 have been shown to bind endocannabinoids. FABP inhibitors attenuate the breakdown of anandamide by the enzyme fatty acid amide hydrolase (FAAH) in cell culture. One of these inhibitors (SB-FI-26), isolated from a virtual library of a million compounds, belongs to a class of compounds that act as an anti-nociceptive agent with mild anti-inflammatory activity in mice. These truxillic acids and their derivatives have been known to have anti-inflammatory and anti-nociceptive effects in mice and are active components of a Chinese herbal medicine used to treat rheumatism and pain in human. The blockade of anandamide transport may, at least in part, be the mechanism through which these compounds exert their anti-nociceptive effects.

In plants, the PIN proteins are integral membrane proteins that transport the anionic form of the phytohormone auxin across membranes. Most of the PIN proteins localize at the plasma membrane (PM) where they serve as secondary active transporters involved in the efflux of auxin. The PM-localized PIN proteins show asymmetrical localisations on the membrane and are therefore responsible for polar auxin transport. Some other members of the PIN family localize mostly at the ER-membrane or have a dual PM and ER localisation. These PIN proteins regulate the partitioning of auxin within the cell.

The anion exchanger family is a member of the large APC superfamily of secondary carriers. Members of the AE family are generally responsible for the transport of anions across cellular barriers, although their functions may vary. All of them exchange bicarbonate. Characterized protein members of the AE family are found in plants, animals, insects and yeast. Uncharacterized AE homologues may be present in bacteria. Animal AE proteins consist of homodimeric complexes of integral membrane proteins that vary in size from about 900 amino acyl residues to about 1250 residues. Their N-terminal hydrophilic domains may interact with cytoskeletal proteins and therefore play a cell structural role. Some of the currently characterized members of the AE family can be found in the Transporter Classification Database.

Acid-Growth Hypothesis is a theory that explains the expansion dynamics of cells and organs in plants. It was originally proposed by Achim Hager and Robert Cleland in 1971, in the form of “acid-growth hypothesis”. They hypothesized that the naturally occurring plant hormone, auxin (indole-3-acetic acid, IAA), induces H+ proton extrusion into the apoplast. Such derived apoplectic acidification then activates a range of enzymatic reactions which modifies the extensibility of plant cell walls. Since its formulation in 1971, many debates about “acid-growth” began. Most of these debates hovered around the signalling role of auxin and the molecular nature of cell wall modification. Many scientists contributed to the theory's development. With continual improvements on technology, these advancements provided new insight for this molecular mechanism, especially auxin’s role in the apoplectic pH shift. Despite the ongoing controversy and debate that rose from new discoveries, the importance of the acid-growth theory in plant cells’ growth and elongation should not be set aside.

References

  1. 1 2 Rubery P and Sheldrake SH, P. H.; Sheldrake, A. R. (1974). "Carrier-mediated auxin transport". Planta. 118 (2): 101–121. doi:10.1007/BF00388387. PMID   24442257. S2CID   10724269.
  2. Raven, J (1975). "Transport of Indoleacetic-acid in plant-cells in relation to pH and electrical potential gradients, and its significance for Polar IAA Transport". New Phytologist. 74 (163–172): 163–172. doi:10.1111/j.1469-8137.1975.tb02602.x.
  3. Goldsmith, M (1977). "The Polar Transport of Auxin". Annual Review of Plant Physiology. 28: 439–478. doi:10.1146/annurev.pp.28.060177.002255.
  4. 1 2 3 4 5 Zažímalová, E.; A. S. Murphy; H. Yang; K. Hoyerová; P. Hošek (2009). "Auxin Transporters--Why So Many?". Cold Spring Harbor Perspectives in Biology. 2 (3): a001552. doi:10.1101/cshperspect.a001552. ISSN   1943-0264. PMC   2829953 . PMID   20300209.
  5. 1 2 3 Abel, S.; A. Theologis (2010). "Odyssey of Auxin". Cold Spring Harbor Perspectives in Biology. 2 (10): a004572. doi:10.1101/cshperspect.a004572. ISSN   1943-0264. PMC   2944356 . PMID   20739413.
  6. 1 2 Friml, Jiří; Wiśniewska, Justyna; Benková, Eva; Mendgen, Kurt; Palme, Klaus (2002). "Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis". Nature. 415 (6873): 806–9. Bibcode:2002Natur.415..806F. doi:10.1038/415806a. ISSN   0028-0836. PMID   11845211. S2CID   4348635.
  7. Janick, Jules (2010). Horticultural Reviews. John Wiley & Sons. p. 235. ISBN   978-0470650530.CS1 maint: ref=harv (link)
  8. 1 2 Friml, Jiří (2003). "Auxin transport — shaping the plant". Current Opinion in Plant Biology. 6 (1): 7–12. doi:10.1016/S1369526602000031. PMID   12495745.
  9. 1 2 p.435 Plant Physiology Third Edition Taiz and Zeiger (2002)
  10. Gloria K Muday, Alison DeLong. (2001)Polar auxin transport:controlling where and how much. Trends in Plant Science6(11):535-542
  11. Tan, Shutang; Zhang, Xixi; Kong, Wei; Yang, Xiao-Li; Molnár, Gergely; Vondráková, Zuzana; Filepová, Roberta; Petrášek, Jan; Friml, Jiří; Xue, Hong-Wei (2020). "The lipid code-dependent phosphoswitch PDK1–D6PK activates PIN-mediated auxin efflux in Arabidopsis". Nature Plants. 6 (5): 556–569. doi:10.1038/s41477-020-0648-9. PMID   32393881. S2CID   218593545.