Indole-3-acetic acid

Last updated
Indole-3-acetic acid
Indol-3-ylacetic acid.svg
Names
Preferred IUPAC name
(1H-Indol-3-yl)acetic acid
Other names
Indole-3-acetic acid,
indolylacetic acid,
1H-Indole-3-acetic acid,
indoleacetic acid,
heteroauxin,
IAA
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.001.590 OOjs UI icon edit-ltr-progressive.svg
KEGG
PubChem CID
UNII
  • InChI=1S/C10H9NO2/c12-10(13)5-7-6-11-9-4-2-1-3-8(7)9/h1-4,6,11H,5H2,(H,12,13) Yes check.svgY
    Key: SEOVTRFCIGRIMH-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C10H9NO2/c12-10(13)5-7-6-11-9-4-2-1-3-8(7)9/h1-4,6,11H,5H2,(H,12,13)
    Key: SEOVTRFCIGRIMH-UHFFFAOYAT
  • O=C(O)Cc1c[nH]c2ccccc12
Properties
C10H9NO2
Molar mass 175.187 g·mol−1
AppearanceWhite solid
Melting point 168 to 170 °C (334 to 338 °F; 441 to 443 K)
insoluble in water. Soluble in ethanol to 50mg/mL
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Indole-3-acetic acid (IAA, 3-IAA) is the most common naturally occurring plant hormone of the auxin class. It is the best known of the auxins, and has been the subject of extensive studies by plant physiologists. [1] IAA is a derivative of indole, containing a carboxymethyl substituent. It is a colorless solid that is soluble in polar organic solvents.

Contents

Biosynthesis

IAA is predominantly produced in cells of the apex (bud) and very young leaves of a plant. Plants can synthesize IAA by several independent biosynthetic pathways. Four of them start from tryptophan, but there is also a biosynthetic pathway independent of tryptophan. [2] Plants mainly produce IAA from tryptophan through indole-3-pyruvic acid. [3] [4] IAA is also produced from tryptophan through indole-3-acetaldoxime in Arabidopsis thaliana . [5]

In rats, IAA is a product of both endogenous and colonic microbial metabolism from dietary tryptophan along with tryptophol. This was first observed in rats infected by Trypanosoma brucei gambiense . [6] A 2015 experiment showed that a high-tryptophan diet can decrease serum levels of IAA in mice, but that in humans, protein consumption has no reliably predictable effect on plasma IAA levels. [7] Human cells have been known to produce IAA in vitro since the 1950s, [8] and the critical biosynthesis gene IL4I1 has been identified. [9] [10]

Biological effects

As all auxins, IAA has many different effects, such as inducing cell elongation and cell division with all subsequent results for plant growth and development. On a larger scale, IAA serves as signaling molecule necessary for development of plant organs and coordination of growth.

Plant gene regulation

IAA enters the plant cell nucleus and binds to a protein complex composed of a ubiquitin-activating enzyme (E1), a ubiquitin-conjugating enzyme (E2), and a ubiquitin ligase (E3), resulting in ubiquitination of Aux/IAA proteins with increased speed. [11] Aux/IAA proteins bind to auxin response factor (ARF) proteins, forming a heterodimer, suppressing ARF activity. [12] In 1997 it was described how ARFs bind to auxin-response gene elements in promoters of auxin regulated genes, generally activating transcription of that gene when an Aux/IAA protein is not bound. [13]

IAA inhibits the photorespiratory-dependent cell death in photorespiratory catalase mutants. This suggests a role for auxin signalling in stress tolerance. [14]

Bacterial physiology

IAA production is widespread among environmental bacteria that inhabit soils, waters, but also plant and animal hosts. Distribution and substrate specificity of the involved enzymes suggests these pathways play a role beyond plant-microbe interactions. [15] Enterobacter cloacae can produce IAA, from aromatic and branched-chain amino acids. [16]

Fungal symbiosis

Fungi can form a fungal mantle around roots of perennial plants called ectomycorrhiza. A fungus specific to spruce called Tricholoma vaccinum was shown to produce IAA from tryptophan and excrete it from its hyphae. This induced branching in cultures, and enhanced Hartig net formation. The fungus uses a multidrug and toxic extrusion (MATE) transporter Mte1. [17] Research into IAA-producing fungi to promote plant growth and protection in sustainable agriculture is underway. [18]

Skatole biosynthesis

Skatole, the odorant in feces, is produced from tryptophan via indoleacetic acid. Decarboxylation gives the methylindole. [19] [20]

Synthesis

Chemically, it can be synthesized by the reaction of indole with glycolic acid in the presence of base at 250 °C: [21]

Synthesis of indole-3-acetic acid.png

Alternatively the compound has been synthesized by Fischer indole synthesis using glutamic acid and phenylhydrazine. [22] Glutamic acid was converted to the necessary aldehyde via Strecker degradation.

Many methods for its synthesis have been developed since its original synthesis from indole-3-acetonitrile. [23]

History and synthetic analogs

William Gladstone Tempelman studied substances for growth promotion at Imperial Chemical Industries Ltd. After 7 years of research he changed the direction of his study to try the same substances at high concentrations in order to stop plant growth. In 1940 he published his finding that IAA killed broadleaf plants within a cereal field. [24]

The search for an acid with a longer half life, i.e. a metabolically and environmentally more stable compound led to 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), both phenoxy herbicides and analogs of IAA. Robert Pokorny an industrial chemist for the C.B. Dolge Company in Westport, Connecticut published their synthesis in 1941. [25] When sprayed on broad-leaf dicot plants, they induce rapid, uncontrolled growth, eventually killing them. First introduced in 1946, these herbicides were in widespread use in agriculture by the middle of the 1950s.[ citation needed ]

Other less expensive synthetic auxin analogs on the market for use in horticulture are indole-3-butyric acid (IBA) and 1-naphthaleneacetic acid (NAA). [26]

Mammalian toxicity/health effects

Little research has been conducted on the effects of IAA on humans and toxicity data are limited. No data on human carcinogenic, teratogenic, or developmental effects have been created.

IAA is listed in its MSDS as mutagenic to mammalian somatic cells, and possibly carcinogenic based on animal data. It may cause adverse reproductive effects (fetotoxicity) and birth defects based on animal data. No human data as of 2008. [27] It is listed as a potential skin, eye, and respiratory irritant, and users are warned not to ingest it. Protocols for ingestion, inhalation, and skin/eye exposure are standard for moderately poisonous compounds and include thorough rinsing in the case of skin and eyes, fresh air in the case of inhalation, and immediately contacting a physician in all cases to determine the best course of action and not to induce vomiting when of ingested. The NFPA 704 health hazard rating for IAA is 2, which denotes a risk of temporary incapacitation with intense or prolonged, but not chronic exposure, and a possibility of residual injury. [28] IAA is a direct ligand of the aryl hydrocarbon receptor, [29] and IAA treatment of mice indicate liver-protective effects in a model of non-alcoholic fatty liver disease. [30] Humans typically have relatively high levels of IAA in their serum (~1 μM), but this can be increased further in certain disease conditions and can be a poor prognostic marker for cardiovascular health. [31] Whether this IAA originates from endogenous biosynthesis via IL4I1 or gut microbiota is unknown. A 2021 study found that normal mice had an average of 3.7 times as much IAA in their feces compared to germ-free mice, suggesting that the mammalian microbiome contributes significantly to the overall circulating amount. [32]

Developmental toxicity

IAA produces microcephaly in rats during the early stage of cerebral cortex development. IAA treatment of pregnant rats, at a dose of 1 gram per kg of body weight per day, decreased the locomotor activities of rat embryos/fetuses; treatment with IAA and analog 1(methyl)-IAA resulted in apoptosis of neuroepithelial cell and significantly decreased brain sizes relative to body weight in embryonic rats. [33]

Immunotoxin

IAA is an apoptosis-inducing ligand in mammals. As of 2010, the signal transduction pathways are as follows: IAA/HRP activates p38 mitogen-activated protein kinases and c-Jun N-terminal kinases. It induces caspase-8 and caspase-9, which results in caspase-3 activation and poly(adp-ribose) polymerases cleavage. [34]

In 2002 it had been hypothesized that IAA coupled with horseradish peroxidase (HRP) could be used in targeted cancer therapy. Radical-IAA molecules would attach to cells marked by HRP and HRP reactive cells would be selectively killed. [35] In 2010 in vitro experiments proved this concept of IAA as an immunotoxin when used in preclinical studies of targeted cancer therapy, as it induced apoptosis in bladder [34] and in hematological malignancies. [36]

Related Research Articles

<span class="mw-page-title-main">Tryptophan synthase</span>

Tryptophan synthase or tryptophan synthetase is an enzyme that catalyses the final two steps in the biosynthesis of tryptophan. It is commonly found in Eubacteria, Archaebacteria, Protista, Fungi, and Plantae. However, it is absent from Animalia. It is typically found as an α2β2 tetramer. The α subunits catalyze the reversible formation of indole and glyceraldehyde-3-phosphate (G3P) from indole-3-glycerol phosphate (IGP). The β subunits catalyze the irreversible condensation of indole and serine to form tryptophan in a pyridoxal phosphate (PLP) dependent reaction. Each α active site is connected to a β active site by a 25 angstrom long hydrophobic channel contained within the enzyme. This facilitates the diffusion of indole formed at α active sites directly to β active sites in a process known as substrate channeling. The active sites of tryptophan synthase are allosterically coupled.

<span class="mw-page-title-main">Auxin</span> Plant hormone

Auxins are a class of plant hormones with some morphogen-like characteristics. Auxins play a cardinal role in coordination of many growth and behavioral processes in plant life cycles and are essential for plant body development. The Dutch biologist Frits Warmolt Went first described auxins and their role in plant growth in the 1920s. Kenneth V. Thimann became the first to isolate one of these phytohormones and to determine its chemical structure as indole-3-acetic acid (IAA). Went and Thimann co-authored a book on plant hormones, Phytohormones, in 1937.

<span class="mw-page-title-main">Cytokinin</span> Class of plant hormones promoting cell division

Cytokinins (CK) are a class of plant hormones that promote cell division, or cytokinesis, in plant roots and shoots. They are involved primarily in cell growth and differentiation, but also affect apical dominance, axillary bud growth, and leaf senescence.

Gibberellins (GAs) are plant hormones that regulate various developmental processes, including stem elongation, germination, dormancy, flowering, flower development, and leaf and fruit senescence. GAs are one of the longest-known classes of plant hormone. It is thought that the selective breeding of crop strains that were deficient in GA synthesis was one of the key drivers of the "green revolution" in the 1960s, a revolution that is credited to have saved over a billion lives worldwide.

<span class="mw-page-title-main">Jasmonate</span> Lipid-based plant hormones

Jasmonate (JA) and its derivatives are lipid-based plant hormones that regulate a wide range of processes in plants, ranging from growth and photosynthesis to reproductive development. In particular, JAs are critical for plant defense against herbivory and plant responses to poor environmental conditions and other kinds of abiotic and biotic challenges. Some JAs can also be released as volatile organic compounds (VOCs) to permit communication between plants in anticipation of mutual dangers.

<span class="mw-page-title-main">Gingerol</span> Chemical compound

Gingerol ([6]-gingerol) is a phenolic phytochemical compound found in fresh ginger that activates heat receptors on the tongue. It is normally found as a pungent yellow oil in the ginger rhizome, but can also form a low-melting crystalline solid. This chemical compound is found in all members of the Zingiberaceae family and is high in concentrations in the grains of paradise as well as an African Ginger species.

<span class="mw-page-title-main">Glucobrassicin</span> Chemical compound

Glucobrassicin is a type of glucosinolate that can be found in almost all cruciferous plants, such as cabbages, broccoli, mustards, and woad. As for other glucosinolates, degradation by the enzyme myrosinase is expected to produce an isothiocyanate, indol-3-ylmethylisothiocyanate. However, this specific isothiocyanate is expected to be highly unstable, and has indeed never been detected. The observed hydrolysis products when isolated glucobrassicin is degraded by myrosinase are indole-3-carbinol and thiocyanate ion, which are envisioned to result from a rapid reaction of the unstable isothiocyanate with water. However, a large number of other reaction products are known, and indole-3-carbinol is not the dominant degradation product when glucosinolate degradation takes place in crushed plant tissue or in intact plants.

Polar auxin transport is the regulated transport of the plant hormone auxin in plants. It is an active process, the hormone is transported in cell-to-cell manner and one of the main features of the transport is its asymmetry and directionality (polarity). The polar auxin transport functions to coordinate plant development; the following spatial auxin distribution underpins most of plant growth responses to its environment and plant growth and developmental changes in general. In other words, the flow and relative concentrations of auxin informs each plant cell where it is located and therefore what it should do or become.

<span class="mw-page-title-main">Brassinolide</span> Chemical compound

Brassinolide is a plant hormone. The first isolated brassinosteroid, it was discovered when it was shown that pollen from rapeseed could promote stem elongation and cell division. The biologically active component was isolated and named brassinolide.

<span class="mw-page-title-main">Aromatic amino acid</span> Amino acid having an aromatic ring

An aromatic amino acid is an amino acid that includes an aromatic ring.

<span class="mw-page-title-main">Staurosporine</span> Chemical compound

Staurosporine is a natural product originally isolated in 1977 from the bacterium Streptomyces staurosporeus. It was the first of over 50 alkaloids that were discovered to share this type of bis-indole chemical structure. The chemical structure of staurosporine was elucidated by X-ray crystalography in 1994.

<span class="mw-page-title-main">4-Chloroindole-3-acetic acid</span> Chemical compound

4-Chloroindole-3-acetic acid (4-Cl-IAA) is an organic compound that functions as a plant hormone.

<span class="mw-page-title-main">Tryptophol</span> Chemical compound

Tryptophol is an aromatic alcohol that induces sleep in humans. It is found in wine as a secondary product of ethanol fermentation. It was first described by Felix Ehrlich in 1912. It is also produced by the trypanosomal parasite in sleeping sickness.

Tryptophan N-monooxygenase (EC 1.14.13.125, tryptophan N-hydroxylase, CYP79B1, CYP79B2, CYP79B3) is an enzyme with systematic name L-tryptophan,NADPH:oxygen oxidoreductase (N-hydroxylating). This enzyme catalyses the following chemical reaction

Indole-3-pyruvate monooxygenase (EC 1.14.13.168, YUC2 (gene), spi1 (gene)) is an enzyme with systematic name indole-3-pyruvate,NADPH:oxygen oxidoreductase (1-hydroxylating, decarboxylating). This enzyme catalyses the following chemical reaction

L-tryptophan—pyruvate aminotransferase is an enzyme with systematic name L-tryptophan:pyruvate aminotransferase. This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Camalexin</span> Chemical compound

Camalexin (3-thiazol-2-yl-indole) is a simple indole alkaloid found in the plant Arabidopsis thaliana and other crucifers. The secondary metabolite functions as a phytoalexin to deter bacterial and fungal pathogens.

Gaseous signaling molecules are gaseous molecules that are either synthesized internally (endogenously) in the organism, tissue or cell or are received by the organism, tissue or cell from outside and that are used to transmit chemical signals which induce certain physiological or biochemical changes in the organism, tissue or cell. The term is applied to, for example, oxygen, carbon dioxide, sulfur dioxide, nitrous oxide, hydrogen cyanide, ammonia, methane, hydrogen, ethylene, etc.

The acid-growth hypothesis is a theory that explains the expansion dynamics of cells and organs in plants. It was originally proposed by Achim Hager and Robert Cleland in 1971. They hypothesized that the naturally occurring plant hormone, auxin (indole-3-acetic acid, IAA), induces H+ proton extrusion into the apoplast. Such derived apoplastic acidification then activates a range of enzymatic reactions which modifies the extensibility of plant cell walls. Since its formulation in 1971, the hypothesis has stimulated much research and debate. Most debates have concerned the signalling role of auxin and the molecular nature of cell wall modification. The current version holds that auxin activates small auxin-up RNA (SAUR) proteins, which in turn regulate protein phosphatases that modulate proton-pump activity. Acid growth is responsible for short-term (seconds to minutes) variation in growth rate, but many other mechanisms influence longer-term growth.

<span class="mw-page-title-main">Ethylene (plant hormone)</span> Alkene gas naturally regulating the plant growth

Ethylene (CH
2
=CH
2
) is an unsaturated hydrocarbon gas (alkene) acting as a naturally occurring plant hormone. It is the simplest alkene gas and is the first gas known to act as hormone. It acts at trace levels throughout the life of the plant by stimulating or regulating the ripening of fruit, the opening of flowers, the abscission (or shedding) of leaves and, in aquatic and semi-aquatic species, promoting the 'escape' from submergence by means of rapid elongation of stems or leaves. This escape response is particularly important in rice farming. Commercial fruit-ripening rooms use "catalytic generators" to make ethylene gas from a liquid supply of ethanol. Typically, a gassing level of 500 to 2,000 ppm is used, for 24 to 48 hours. Care must be taken to control carbon dioxide levels in ripening rooms when gassing, as high temperature ripening (20 °C; 68 °F) has been seen to produce CO2 levels of 10% in 24 hours.

References

  1. Simon, Sibu; Petrášek, Jan (2011). "Why plants need more than one type of auxin". Plant Science. 180 (3): 454–60. doi:10.1016/j.plantsci.2010.12.007. PMID   21421392.
  2. Zhao, Yunde (2010). "Auxin Biosynthesis and Its Role in Plant Development". Annual Review of Plant Biology. 61: 49–64. doi:10.1146/annurev-arplant-042809-112308. PMC   3070418 . PMID   20192736.
  3. Mashiguchi, Kiyoshi; Tanaka, Keita; Sakai, Tatsuya; Sugawara, Satoko; Kawaide, Hiroshi; Natsume, Masahiro; Hanada, Atsushi; Yaeno, Takashi; et al. (2011). "The main auxin biosynthesis pathway in Arabidopsis". Proceedings of the National Academy of Sciences. 108 (45): 18512–7. Bibcode:2011PNAS..10818512M. doi: 10.1073/pnas.1108434108 . PMC   3215075 . PMID   22025724.
  4. Won, Christina; Shen, Xiangling; Mashiguchi, Kiyoshi; Zheng, Zuyu; Dai, Xinhua; Cheng, Youfa; Kasahara, Hiroyuki; Kamiya, Yuji; et al. (2011). "Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis". Proceedings of the National Academy of Sciences. 108 (45): 18518–23. Bibcode:2011PNAS..10818518W. doi: 10.1073/pnas.1108436108 . PMC   3215067 . PMID   22025721.
  5. Sugawara, Satoko; Hishiyama, Shojiro; Jikumaru, Yusuke; Hanada, Atsushi; Nishimura, Takeshi; Koshiba, Tomokazu; Zhao, Yunde; Kamiya, Yuji; Kasahara, Hiroyuki (2009). "Biochemical analyses of indole-3-acetaldoxime-dependent auxin biosynthesis in Arabidopsis". Proceedings of the National Academy of Sciences. 106 (13): 5430–5. Bibcode:2009PNAS..106.5430S. doi: 10.1073/pnas.0811226106 . JSTOR   40455212. PMC   2664063 . PMID   19279202.
  6. Howard Stibbs Henry; Richard Seed John (1975). "Short-Term Metabolism of [14C]Tryptophan in Rats Infected with Trypanosoma brucei gambiense". J Infect Dis. 131 (4): 459–462. doi:10.1093/infdis/131.4.459. PMID   1117200.
  7. Poesen R, Mutsaers HA, et al. (Oct 2015). "The Influence of Dietary Protein Intake on Mammalian Tryptophan and Phenolic Metabolites". PLOS ONE. 10 (10): e0140820. Bibcode:2015PLoSO..1040820P. doi: 10.1371/journal.pone.0140820 . PMC   4607412 . PMID   26469515.
  8. Weissbach, H.; King, W.; Sjoerdsma, A.; Udenfriend, S. (January 1959). "Formation of indole-3-acetic acid and tryptamine in animals: a method for estimation of indole-3-acetic acid in tissues". The Journal of Biological Chemistry. 234 (1): 81–86. doi: 10.1016/S0021-9258(18)70339-6 . ISSN   0021-9258. PMID   13610897.
  9. Zhang, Xia; Gan, Min; Li, Jingyun; Li, Hui; Su, Meicheng; Tan, Dongfei; Wang, Shaolei; Jia, Man; Zhang, Liguo; Chen, Gang (2020-08-31). "An endogenous indole pyruvate pathway for tryptophan metabolism mediated by IL4I1". Journal of Agricultural and Food Chemistry. 68 (39): 10678–10684. doi:10.1021/acs.jafc.0c03735. ISSN   1520-5118. PMID   32866000. S2CID   221402986.
  10. Sadik, Ahmed; Somarribas Patterson, Luis F.; Öztürk, Selcen; Mohapatra, Soumya R.; Panitz, Verena; Secker, Philipp F.; Pfänder, Pauline; Loth, Stefanie; Salem, Heba; Prentzell, Mirja Tamara; Berdel, Bianca; Iskar, Murat; Faessler, Erik; Reuter, Friederike; Kirst, Isabelle; Kalter, Verena; Foerster, Kathrin I.; Jäger, Evelyn; Guevara, Carina Ramallo; Sobeh, Mansour; Hielscher, Thomas; Poschet, Gernot; Reinhardt, Annekathrin; Hassel, Jessica C.; Zapatka, Marc; Hahn, Udo; von Deimling, Andreas; Hopf, Carsten; Schlichting, Rita; Escher, Beate I.; Burhenne, Jürgen; Haefeli, Walter E.; Ishaque, Naveed; Böhme, Alexander; Schäuble, Sascha; Thedieck, Kathrin; Trump, Saskia; Seiffert, Martina; Opitz, Christiane A. (2020-08-17). "IL4I1 Is a Metabolic Immune Checkpoint that Activates the AHR and Promotes Tumor Progression". Cell. 182 (5): 1252–1270.e34. doi: 10.1016/j.cell.2020.07.038 . ISSN   1097-4172. PMID   32818467. S2CID   221179265.
  11. Pekker, MD; Deshaies, RJ (2005). "Function and regulation of cullin-RING ubiquitin ligases" (PDF). Plant Cell. 6 (1): 9–20. doi:10.1038/nrm1547. PMID   15688063. S2CID   24159190.
  12. Tiwari, SB; Hagen, G; Guilfoyle, TJ (2004). "Aux/IAA proteins contain a potent transcriptional repression domain". Plant Cell. 16 (2): 533–43. doi:10.1105/tpc.017384. PMC   341922 . PMID   14742873.
  13. Ulmasov, T; Hagen, G; Guilfoyle, TJ (1997). "ARF1, a transcription factor that binds to auxin response elements". Science. 276 (5320): 1865–68. doi:10.1126/science.276.5320.1865. PMID   9188533.
  14. Kerchev P, Muhlenbock P, Denecker J, Morreel K, Hoeberichts FA, van der Kelen K, Vandorpe M, Nguyen L, Audenaert D, van Breusegem F (Feb 2015). "Activation of auxin signalling counteracts photorespiratory H2O2-dependent cell death". Plant Cell Environ. 38 (2): 253–65. doi: 10.1111/pce.12250 . PMID   26317137.
  15. Patten CL, Blakney AJ, Coulson TJ (Nov 2013). "Activity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteria". Crit Rev Microbiol. 39 (4): 395–415. doi:10.3109/1040841X.2012.716819. PMID   22978761. S2CID   22123626.
  16. Parsons CV, Harris DM, Patten CL, et al. (Sep 2015). "Regulation of indole-3-acetic acid biosynthesis by branched-chain amino acids in Enterobacter cloacae UW5". FEMS Microbiol Lett. 362 (18): fnv153. doi: 10.1093/femsle/fnv153 . PMID   26347301.
  17. Krause K, Henke C, Asiimwe T, Ulbricht A, Klemmer S, Schachtschabel D, Boland W, Kothe E (Oct 2015). "Biosynthesis and Secretion of Indole-3-Acetic Acid and Its Morphological Effects on Tricholoma vaccinum-Spruce Ectomycorrhiza". Appl Environ Microbiol. 81 (20): 7003–11. Bibcode:2015ApEnM..81.7003K. doi:10.1128/AEM.01991-15. PMC   4579454 . PMID   26231639.
  18. Fu SF, Wei JY, Chen HW, Liu YY, Lu HY, Chou JY (Aug 2015). "Indole-3-acetic acid: A widespread physiological code in interactions of fungi with other organisms". Plant Signal Behav. 10 (8): e1048052. doi:10.1080/15592324.2015.1048052. PMC   4623019 . PMID   26179718.
  19. Whitehead, T. R.; Price, N. P.; Drake, H. L.; Cotta, M. A. (25 January 2008). "Catabolic pathway for the production of skatole and indoleacetic acid by the acetogen Clostridium drakei, Clostridium scatologenes, and swine manure". Applied and Environmental Microbiology. 74 (6): 1950–3. Bibcode:2008ApEnM..74.1950W. doi:10.1128/AEM.02458-07. PMC   2268313 . PMID   18223109.
  20. Yokoyama, M. T.; Carlson, J. R. (1979). "Microbial metabolites of tryptophan in the intestinal tract with special reference to skatole". The American Journal of Clinical Nutrition. 32 (1): 173–178. doi: 10.1093/ajcn/32.1.173 . PMID   367144.
  21. Johnson, Herbert E.; Crosby, Donald G. (1964). "Indole-3-acetic Acid". Organic Syntheses . 44: 64; Collected Volumes, vol. 5, p. 654.
  22. Fox, Sidney W.; Bullock, Milon W. (1951). "Synthesis of Indoleacetic Acid from Glutamic Acid and a Proposed Mechanism for the Conversion". Journal of the American Chemical Society. 73 (6): 2754–2755. doi:10.1021/ja01150a094.
  23. Majima, Rikō; Hoshino, Toshio (1925). "Synthetische Versuche in der Indol-Gruppe, VI.: Eine neue Synthese von β-Indolyl-alkylaminen". Berichte der Deutschen Chemischen Gesellschaft (A and B Series). 58 (9): 2042–6. doi:10.1002/cber.19250580917.
  24. Templeman W. G.; Marmoy C. J. (2008). "The effect upon the growth of plants of watering with solutions of plant-growth substances and of seed dressings containing these materials". Annals of Applied Biology. 27 (4): 453–471. doi:10.1111/j.1744-7348.1940.tb07517.x.
  25. Pokorny Robert (1941). "New Compounds. Some Chlorophenoxyacetic Acids". J. Am. Chem. Soc. 63 (6): 1768. doi:10.1021/ja01851a601.
  26. "PGR Planofix - Crop Science India". www.cropscience.bayer.in. Retrieved 2022-04-28.
  27. "1H-Indole-3-acetic acid" Registry of Toxic Effects of Chemical Substances (RTECS). Page last updated:November 8, 2017.
  28. "Indole-3-Acetic Acid: Material Safety Data Sheet." November 2008.
  29. Miller, Charles A. (1997-12-26). "Expression of the Human Aryl Hydrocarbon Receptor Complex in Yeast ACTIVATION OF TRANSCRIPTION BY INDOLE COMPOUNDS". Journal of Biological Chemistry. 272 (52): 32824–32829. doi: 10.1074/jbc.272.52.32824 . ISSN   1083-351X. PMID   9407059. S2CID   45619222 . Retrieved 2020-01-08.
  30. Ji, Yun; Gao, Yuan; Chen, Hong; Yin, Yue; Zhang, Weizhen (2019-09-03). "Indole-3-Acetic Acid Alleviates Nonalcoholic Fatty Liver Disease in Mice via Attenuation of Hepatic Lipogenesis, and Oxidative and Inflammatory Stress". Nutrients. 11 (9): 2062. doi: 10.3390/nu11092062 . ISSN   2072-6643. PMC   6769627 . PMID   31484323.
  31. Dou, Laetitia; Sallée, Marion; Cerini, Claire; Poitevin, Stéphane; Gondouin, Bertrand; Jourde-Chiche, Noemie; Fallague, Karim; Brunet, Philippe; Calaf, Raymond; Dussol, Bertrand; Mallet, Bernard; Dignat-George, Françoise; Burtey, Stephane (April 2015). "The cardiovascular effect of the uremic solute indole-3 acetic acid". Journal of the American Society of Nephrology. 26 (4): 876–887. doi:10.1681/ASN.2013121283. ISSN   1533-3450. PMC   4378098 . PMID   25145928.
  32. Lai, Yunjia; Liu, Chih-Wei; Yang, Yifei; Hsiao, Yun-Chung; Ru, Hongyu; Lu, Kun (2021). "High-coverage metabolomics uncovers microbiota-driven biochemical landscape of interorgan transport and gut-brain communication in mice". Nature Communications. 12 (6000): 6000. Bibcode:2021NatCo..12.6000L. doi: 10.1038/s41467-021-26209-8 . PMC   8526691 . PMID   34667167.
  33. Furukawa, Satoshi; Usuda, Koji; Abe, Masayoshi; Ogawa, Izumi (2005). "Effect of Indole-3-Acetic Acid Derivatives on Neuroepithelium in Rat Embryos". The Journal of Toxicological Sciences. 30 (3): 165–74. doi: 10.2131/jts.30.165 . PMID   16141651.
  34. 1 2 Jeong YM, Oh MH, Kim SY, Li H, Yun HY, Baek KJ, Kwon NS, Kim WY, Kim DS (2010). "Indole-3-acetic acid/horseradish peroxidase induces apoptosis in TCCSUP human urinary bladder carcinoma cells". Pharmazie. 65 (2): 122–6. PMID   20225657.
  35. Wardman P (2002). "Indole-3-acetic acids and horseradish peroxidase: a new prodrug/enzyme combination for targeted cancer therapy". Curr. Pharm. Des. 8 (15): 1363–74. doi:10.2174/1381612023394610. PMID   12052213.
  36. Dalmazzo LF, Santana-Lemos BA, Jácomo RH, Garcia AB, Rego EM, da Fonseca LM, Falcão RP (2011). "Antibody-targeted horseradish peroxidase associated with indole-3-acetic acid induces apoptosis in vitro in hematological malignancies". Leuk. Res. 35 (5): 657–62. doi:10.1016/j.leukres.2010.11.025. PMID   21168913. S2CID   32655907. cited in: Wayne AS, Fitzgerald DJ, Kreitman RJ, Pastan I (2014). "Immunotoxins for leukemia". Blood. 123 (16): 2470–7. doi:10.1182/blood-2014-01-492256. PMC   3990911 . PMID   24578503.