Ubiquitin-activating enzyme

Last updated
Ubiquitin-activating enzymes
Ubiquitin-activating enzyme bound to Ubiquitin.png
Crystal structure of the yeast ubiquitin-activating enzyme E1 / ubiquitin complex. [1]
Identifiers
EC no. 6.2.1.45
CAS no. 74812-49-0
Alt. namesE1 enzymes
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

Ubiquitin-activating enzymes, also known as E1 enzymes, catalyze the first step in the ubiquitination reaction, which (among other things) can target a protein for degradation via a proteasome. This covalent bond of ubiquitin or ubiquitin-like proteins to targeted proteins is a major mechanism for regulating protein function in eukaryotic organisms. [2] Many processes such as cell division, immune responses and embryonic development are also regulated by post-translational modification by ubiquitin and ubiquitin-like proteins. [2]

Contents

Ubiquitination (ubiquitylation)

Ubiquitin-activating enzyme (E1) starts the ubiquitination process (Figure 1). The E1 enzyme, along with ATP, binds to the ubiquitin protein. The E1 enzyme then passes the ubiquitin protein to a second protein, called ubiquitin carrier or conjugation protein (E2). The E2 protein complexes with a ubiquitin protein ligase (E3). This ubiquitin protein ligase recognizes which protein needs to be tagged and catalyzes the transfer of ubiquitin to that protein. This pathway repeats itself until the target protein has a full chain of ubiquitin attached to itself. [3]

Structure and mechanism

At the start of the ubiquitination cascade, the E1 enzyme (Figure 2) binds ATP-Mg2+ and ubiquitin and catalyses ubiquitin C-terminal acyl adenylation. [4] In the next step a catalytic cysteine (Figure 3) on the E1 enzyme attacks the ubiquitin-AMP complex through acyl substitution, simultaneously creating a thioester bond and an AMP leaving group. [2] Finally, the E1-ubiquitin complex transfers ubiquitin to an E2 enzyme through a transthioesterification reaction, in which an E2 catalytic cysteine attacks the backside of the E1-ubiquitin complex. [5] However, the transthioesterification process is very complicated, as both E1 and E2 enzymes form an intermediate complex wherein both enzymes undergo a series of conformational changes in order to bind with one another. [5]

Throughout this mechanism, the E1 enzyme is bound to two ubiquitin molecules. Although this secondary ubiquitin is similarly adenylated, it does not form the same thioester complex described previously. The function of the secondary ubiquitin remains largely unknown, however it is believed that it may facilitate conformational changes seen in the E1 enzyme during the transthioesterification process. [2]

Isozymes

The following genes encode ubiquitin-activating enzymes:

Disease association

The ubiquitin-proteasome system is critical to appropriate protein degradation within cells. Dysfunctions of this system can disrupt cellular homeostasis and lead to a host of disorders. In normally functioning cells, the covalent linkage of ubiquitin or ubiquitin-like protein to a target protein changes the target protein's surface. These ubiquitinated proteins are subject to degradation by proteolytic and non-proteolytic pathways. [7] If this system malfunctions, numerous inherited and acquired diseases may result, such as cancer, diabetes, stroke, Alzheimer's disease, amyotrophic lateral sclerosis, multiple sclerosis, asthma, inflammatory bowel disease, autoimmune thyroiditis, inflammatory arthritis, lupus, and VEXAS syndrome. [7]

Missense in UBE1 and X-linked infantile spinal muscular atrophy (XL-SMA)

Among the various disorders associated with the ubiquitin-proteasome pathway is X-linked infantile spinal muscular atrophy (XL-SMA). [8] The fatal childhood disorder is associated with loss of anterior horn cells and infantile death. Clinical features include hypotonia, areflexia, and multiple congenital contractures. In a large-scale mutation analysis, screening of six XL-SMA families provided results indicating two novel missense mutations in two families and a novel synonymous C→T substitution in another three families. All of these detected mutations were located in exon 15 of the UBE1 gene (the gene encoding ubiquitin-activating enzyme) and were observed to segregate with disease in the families. In brevity, UBE1 missense may lead to a disturbed complex building with gigaxonin, a protein involved in axonal structure and neuronal maintenance. This can lead to impaired degradation of microtubule-associated protein 1B (MAP1B), resulting in the build-up of MAP1B protein, which may enhance neuronal cell death. [8] Thus, mutations in UBE1 are suspected to be the cause of genetic defects in XL-SMA individuals.

Related Research Articles

<span class="mw-page-title-main">Proteasome</span> Protein complexes which degrade unnecessary or damaged proteins by proteolysis

Proteasomes are protein complexes which degrade unneeded or damaged proteins by proteolysis, a chemical reaction that breaks peptide bonds. Enzymes that help such reactions are called proteases.

<span class="mw-page-title-main">Ubiquitin</span> Regulatory protein found in most eukaryotic tissues

Ubiquitin is a small regulatory protein found in most tissues of eukaryotic organisms, i.e., it is found ubiquitously. It was discovered in 1975 by Gideon Goldstein and further characterized throughout the late 1970s and 1980s. Four genes in the human genome code for ubiquitin: UBB, UBC, UBA52 and RPS27A.

<span class="mw-page-title-main">Ubiquitin ligase</span> Protein

A ubiquitin ligase is a protein that recruits an E2 ubiquitin-conjugating enzyme that has been loaded with ubiquitin, recognizes a protein substrate, and assists or directly catalyzes the transfer of ubiquitin from the E2 to the protein substrate. In simple and more general terms, the ligase enables movement of ubiquitin from a ubiquitin carrier to another thing by some mechanism. The ubiquitin, once it reaches its destination, ends up being attached by an isopeptide bond to a lysine residue, which is part of the target protein. E3 ligases interact with both the target protein and the E2 enzyme, and so impart substrate specificity to the E2. Commonly, E3s polyubiquitinate their substrate with Lys48-linked chains of ubiquitin, targeting the substrate for destruction by the proteasome. However, many other types of linkages are possible and alter a protein's activity, interactions, or localization. Ubiquitination by E3 ligases regulates diverse areas such as cell trafficking, DNA repair, and signaling and is of profound importance in cell biology. E3 ligases are also key players in cell cycle control, mediating the degradation of cyclins, as well as cyclin dependent kinase inhibitor proteins. The human genome encodes over 600 putative E3 ligases, allowing for tremendous diversity in substrates.

<span class="mw-page-title-main">Parkin (protein)</span>

Parkin is a 465-amino acid residue E3 ubiquitin ligase, a protein that in humans and mice is encoded by the PARK2 gene. Parkin plays a critical role in ubiquitination – the process whereby molecules are covalently labelled with ubiquitin (Ub) and directed towards degradation in proteasomes or lysosomes. Ubiquitination involves the sequential action of three enzymes. First, an E1 ubiquitin-activating enzyme binds to inactive Ub in eukaryotic cells via a thioester bond and mobilises it in an ATP-dependent process. Ub is then transferred to an E2 ubiquitin-conjugating enzyme before being conjugated to the target protein via an E3 ubiquitin ligase. There exists a multitude of E3 ligases, which differ in structure and substrate specificity to allow selective targeting of proteins to intracellular degradation.

<span class="mw-page-title-main">UBA1</span> Protein-coding gene in the species Homo sapiens

Ubiquitin-like modifier activating enzyme 1 (UBA1) is an enzyme which in humans is encoded by the UBA1 gene. UBA1 participates in ubiquitination and the NEDD8 pathway for protein folding and degradation, among many other biological processes. This protein has been linked to X-linked spinal muscular atrophy type 2, neurodegenerative diseases, and cancers.

<span class="mw-page-title-main">Deubiquitinating enzyme</span>

Deubiquitinating enzymes (DUBs), also known as deubiquitinating peptidases, deubiquitinating isopeptidases, deubiquitinases, ubiquitin proteases, ubiquitin hydrolases, or ubiquitin isopeptidases, are a large group of proteases that cleave ubiquitin from proteins. Ubiquitin is attached to proteins in order to regulate the degradation of proteins via the proteasome and lysosome; coordinate the cellular localisation of proteins; activate and inactivate proteins; and modulate protein-protein interactions. DUBs can reverse these effects by cleaving the peptide or isopeptide bond between ubiquitin and its substrate protein. In humans there are nearly 100 DUB genes, which can be classified into two main classes: cysteine proteases and metalloproteases. The cysteine proteases comprise ubiquitin-specific proteases (USPs), ubiquitin C-terminal hydrolases (UCHs), Machado-Josephin domain proteases (MJDs) and ovarian tumour proteases (OTU). The metalloprotease group contains only the Jab1/Mov34/Mpr1 Pad1 N-terminal+ (MPN+) (JAMM) domain proteases.

Chemical modification refers to a number of various processes involving the alteration of the chemical constitution or structure of molecules.

<span class="mw-page-title-main">Endoplasmic-reticulum-associated protein degradation</span>

Endoplasmic-reticulum-associated protein degradation (ERAD) designates a cellular pathway which targets misfolded proteins of the endoplasmic reticulum for ubiquitination and subsequent degradation by a protein-degrading complex, called the proteasome.

Ubiquitin-conjugating enzymes, also known as E2 enzymes and more rarely as ubiquitin-carrier enzymes, perform the second step in the ubiquitination reaction that targets a protein for degradation via the proteasome. The ubiquitination process covalently attaches ubiquitin, a short protein of 76 amino acids, to a lysine residue on the target protein. Once a protein has been tagged with one ubiquitin molecule, additional rounds of ubiquitination form a polyubiquitin chain that is recognized by the proteasome's 19S regulatory particle, triggering the ATP-dependent unfolding of the target protein that allows passage into the proteasome's 20S core particle, where proteases degrade the target into short peptide fragments for recycling by the cell.

<span class="mw-page-title-main">CDC34</span> Protein-coding gene in the species Homo sapiens

CDC34 is a gene that in humans encodes the protein Ubiquitin-conjugating enzyme E2 R1. This protein is a member of the ubiquitin-conjugating enzyme family, which catalyzes the covalent attachment of ubiquitin to other proteins.

<span class="mw-page-title-main">Ubiquitin D</span> Protein-coding gene in the species Homo sapiens

Ubiquitin D is a protein that in humans is encoded by the UBD gene, also known as FAT10. UBD acts like ubiquitin, by covalently modifying proteins and tagging them for destruction in the proteasome.

<span class="mw-page-title-main">APPBP1</span> Protein-coding gene in the species Homo sapiens

NEDD8-activating enzyme E1 regulatory subunit is a protein that in humans is encoded by the NAE1 gene.

<span class="mw-page-title-main">UBE1C</span> Protein-coding gene in the species Homo sapiens

NEDD8-activating enzyme E1 catalytic subunit is a protein that in humans is encoded by the UBA3 gene.

<span class="mw-page-title-main">PSMD14</span> Protein-coding gene in the species Homo sapiens

26S proteasome non-ATPase regulatory subunit 14, also known as 26S proteasome non-ATPase subunit Rpn11, is an enzyme that in humans is encoded by the PSMD14 gene. This protein is one of the 19 essential subunits of the complete assembled 19S proteasome complex. Nine subunits Rpn3, Rpn5, Rpn6, Rpn7, Rpn8, Rpn9, Rpn11, SEM1, and Rpn12 form the lid sub complex of the 19S regulatory particle of the proteasome complex.

<span class="mw-page-title-main">ATG7</span> Protein-coding gene in the species Homo sapiens

Autophagy related 7 is a protein in humans encoded by ATG7 gene. Related to GSA7; APG7L; APG7-LIKE.

<span class="mw-page-title-main">Pyruvate dehydrogenase (lipoamide) beta</span> Protein-coding gene in the species Homo sapiens

Pyruvate dehydrogenase (lipoamide) beta, also known as pyruvate dehydrogenase E1 component subunit beta, mitochondrial or PDHE1-B is an enzyme that in humans is encoded by the PDHB gene. The pyruvate dehydrogenase (PDH) complex is a nuclear-encoded mitochondrial multienzyme complex that catalyzes the overall conversion of pyruvate to acetyl-CoA and CO2, and provides the primary link between glycolysis and the tricarboxylic acid (TCA) cycle. The PDH complex is composed of multiple copies of three enzymatic components: pyruvate dehydrogenase (E1), dihydrolipoamide acetyltransferase (E2) and lipoamide dehydrogenase (E3). The E1 enzyme is a heterotetramer of two alpha and two beta subunits. This gene encodes the E1 beta subunit. Mutations in this gene are associated with pyruvate dehydrogenase E1-beta deficiency.

<span class="mw-page-title-main">UBA2</span> Protein-coding gene in the species Homo sapiens

Ubiquitin-like 1-activating enzyme E1B (UBLE1B) also known as SUMO-activating enzyme subunit 2 (SAE2) is an enzyme that in humans is encoded by the UBA2 gene.

A proteolysis targeting chimera (PROTAC) is a heterobifunctional molecule composed of two active domains and a linker, capable of removing specific unwanted proteins. Rather than acting as a conventional enzyme inhibitor, a PROTAC works by inducing selective intracellular proteolysis. PROTACs consist of two covalently linked protein-binding molecules: one capable of engaging an E3 ubiquitin ligase, and another that binds to a target protein meant for degradation. Recruitment of the E3 ligase to the target protein results in ubiquitination and subsequent degradation of the target protein via the proteasome. Because PROTACs need only to bind their targets with high selectivity, there are currently many efforts to retool previously ineffective inhibitor molecules as PROTACs for next-generation drugs.

<span class="mw-page-title-main">UBE2Z</span> Protein-coding gene in the species Homo sapiens

Ubiquitin conjugating enzyme E2 Z (UBE2Z), also known as UBA6-specific E2 enzyme 1 (USE1), is an enzyme that in humans is encoded by the UBE2Z gene on chromosome 17. It is ubiquitously expressed in many tissues and cell types. UBE2Z is an E2 ubiquitin conjugating enzyme and participates in the second step of protein ubiquitination during proteolysis. A genome-wide association study (GWAS) revealed the UBE2Z gene to be associated with chronic kidney disease. The UBE2Z gene also contains one of 27 SNPs associated with increased risk of coronary artery disease.

<span class="mw-page-title-main">USP27X</span> Enzyme

The ubiquitin carboxyl-terminal hydrolase 27, also known as deubiquitinating enzyme 27, ubiquitin thioesterase 27 and USP27X, is a deubiquitinating enzyme which is mainly characterized for cleaving ubiquitin (Ub) from proteins and other molecules. Ubiquitin binds to proteins so as to regulate the degradation of them via the proteasome and lysosome among many other functions.

References

  1. PDB: 3CMM ; Lee I, Schindelin H (July 2008). "Structural insights into E1-catalyzed ubiquitin activation and transfer to conjugating enzymes". Cell. 134 (2): 268–78. doi: 10.1016/j.cell.2008.05.046 . PMID   18662542.
  2. 1 2 3 4 5 6 Schulman BA, Harper JW (May 2009). "Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways". Nature Reviews Molecular Cell Biology. 10 (5): 319–31. doi:10.1038/nrm2673. PMC   2712597 . PMID   19352404.
  3. Lecker SH, Goldberg AL, Mitch WE (July 2006). "Protein degradation by the ubiquitin-proteasome pathway in normal and disease states" (PDF). Journal of the American Society of Nephrology. 17 (7): 1807–19. doi: 10.1681/ASN.2006010083 . PMID   16738015.
  4. Tokgöz Z, Bohnsack RN, Haas AL (May 2006). "Pleiotropic effects of ATP.Mg2+ binding in the catalytic cycle of ubiquitin-activating enzyme". The Journal of Biological Chemistry. 281 (21): 14729–37. doi: 10.1074/jbc.M513562200 . PMID   16595681.
  5. 1 2 Lee I, Schindelin H (July 2008). "Structural insights into E1-catalyzed ubiquitin activation and transfer to conjugating enzymes". Cell. 134 (2): 268–78. doi: 10.1016/j.cell.2008.05.046 . PMID   18662542.
  6. This figure is adapted from Scheme 1 of "The Mechanism of Ubiquitin Activating Enzyme: A Kinetic and Equilibrium Analysis" by Arthur Haas. Haas AL, Rose IA (September 1982). "The mechanism of ubiquitin activating enzyme. A kinetic and equilibrium analysis". The Journal of Biological Chemistry. 257 (17): 10329–37. PMID   6286650.
  7. 1 2 Wang J, Maldonado MA (August 2006). "The ubiquitin-proteasome system and its role in inflammatory and autoimmune diseases" (PDF). Cellular & Molecular Immunology. 3 (4): 255–61. PMID   16978533.
  8. 1 2 Ramser J, Ahearn ME, Lenski C, et al. (January 2008). "Rare Missense and Synonymous Variants in UBE1 Are Associated with X-Linked Infantile Spinal Muscular Atrophy". American Journal of Human Genetics. 82 (1): 188–93. doi:10.1016/j.ajhg.2007.09.009. PMC   2253959 . PMID   18179898.