Hartig net

Last updated
Hartig net Ectomycorrhiza illustration.jpg
Hartig net

The Hartig net is the network of inward-growing hyphae, that extends into the plant host root, penetrating between plant cells in the root epidermis and cortex in ectomycorrhizal symbiosis. [1] [2] This network is the internal component of fungal morphology in ectomycorrhizal symbiotic structures formed with host plant roots, in addition to a hyphal mantle or sheath on the root surface, and extramatrical mycelium extending from the mantle into the surrounding soil. The Hartig net is the site of mutualistic resource exchange between the fungus and the host plant. Essential nutrients for plant growth are acquired from the soil by exploration and foraging of the extramatrical mycelium, then transported through the hyphal network across the mantle and into the Hartig net, where they are released by the fungi into the root apoplastic space for uptake by the plant. The hyphae in the Hartig net acquire sugars from the plant root, which are transported to the external mycelium to provide a carbon source to sustain fungal growth. [3]

Contents

Structure and Development

Cross-section of ectomycorrhiza showing thin mantle and Hartig net between epidermal cells Abb3.24 monotropoid mycorrhiza root transverse microscopic hyphal sheath Hartig net hyphal peg 2021 (M. Piepenbring).png
Cross-section of ectomycorrhiza showing thin mantle and Hartig net between epidermal cells
Cross-section of ectomycorrhiza showing thick mantle and Hartig net between cortical cells Abb2.41 ectomycorrhiza root section microscopic hyphal sheath Hartig net 2021 (M. Piepenbring).png
Cross-section of ectomycorrhiza showing thick mantle and Hartig net between cortical cells

The Hartig net is a lattice-like network of hyphae that grow into the plant root from the hyphal mantle at the plant root surface. The hyphae of ectomycorrhizal fungi do not penetrate the plant cells, but occupy the apoplastic space between cells in the root. This network extends between the epidermal cells near the root surface, and may also extend between cells in the root cortex. [2] [4] The hyphae in the Hartig net formed by some ECM fungi are described as having transfer-cell like structures, with highly folded membranes that increase surface area and facilitate secretion and uptake of resources exchanged in the mutualistic symbiosis. [5]

The initiation of hyphal growth into the intercellular space between roots often begins between 2–4 days following the establishment of the hyphal mantle in contact with the root surface. [6] [7] The initial development of the Hartig net likely involves a regulated decrease of plant defense responses, thus allowing fungal infection. Studies carried out with the model ectomycorrhizal fungus Laccaria bicolor have shown that the fungus secretes a small effector protein (MISSP7) that may regulate plant defense mechanisms by controlling plant response to phytohormones. [8] Unlike some plant root pathogenic fungi, ectomycorrhizal fungi are largely unable to produce many plant cell-wall-degrading enzymes, but increased pectin modification enzymes released by Laccaria bicolor during fungal infection and Hartig net development indicate that pectin degradation may function to loosen the adhesion between neighboring plant cells and allow room for hyphal growth between cells [9] [10]

This Hartig net structure is common among ectomycorrhizal fungi, although the depth and thickness of the hyphal network can vary considerably depending on the host species. Fungi associating with plants in the Pinaceae form a robust Hartig net that penetrates between cells deep into the root cortex, while the Hartig net formation in ectomycorrhizal symbioses with many angiosperms may not extend beyond the root epidermis. [11] It has also been demonstrated that the depth and development of the Hartig net can vary among different fungi, even among isolates of the same species. Interestingly, an experiment using two isolates of Paxillus involutus , one of which only developed a loose mantle at the root surface and no developed Hartig net in poplar roots, showed that plant nitrate uptake was still improved by the symbiosis regardless of the presence of internal hyphal structure. [12] As an additional caveat some fungal species such as Tuber melanosporum can form arbutoid mycorrhizae, involving some intracellular penetration into plant root cells by fungal hyphae in addition to developing a shallow Hartig-net-like structure between epidermal cells. [13]

Function

The Hartig net supplies the plant root with chemical elements required for plant growth, such as nitrogen and phosphorus, [14] potassium, [15] [16] and micronutrients [17] in addition to water supplied to the roots through hyphal transport. [18] Essential nutrients acquired from surrounding soil by the extramatrical mycelium are transported into the hyphae in the Hartig net, where they are released into the apoplastic space for direct uptake directly by plant root cells. [3] [19]

In exchange for the nutrients provided by the fungal partner, the plant provides a portion of its photosynthetically fixed carbon to the fungal partner as sugars. Sugars are released into the apoplastic space and made available for uptake by Hartig net hyphae. Although sucrose was long considered to be an important form of carbon provided by the plant to the fungus, many ectomycorrhizal fungi lack sucrose uptake transporters. Therefore, the fungal symbiont may depend on plant production of invertases to degrade sucrose into useable monosaccharides for fungal uptake. [20] [21] In the Hartig net of Amanita muscaria within poplar roots, expression of important fungal enzymes for trehalose biosynthesis was higher than in the extrametrical mycelium, indicating that trehalose production may function as a carbohydrate sink, increasing fungal demand of plant photosynthesized carbon compounds through the symbiotic exchange. [22] The plant regulatory mechanisms that influence the nutrient supply by the Hartig net are not fully understood, but it is thought that upregulation of plant defense mechanisms in response to decreased nitrogen transport by ECM fungi, rather than reductions in carbon allocation to ECM roots, suggesting that the regulation of symbiotic resource exchange for ECM symbiosis is not a simple reciprocal response. [20]

In addition to the exchange of essential nutrients, the Hartig net may play an important role in plant strategies for tolerance of abiotic stressors, such as regulating bioaccumulation of metals [23] [24] or mediating plant stress responses to salinity. [12]

Name

The Hartig net is named after Theodor Hartig, [25] [26] a 19th-century German forest biologist and botanist. He reported research in 1842 on the anatomy of the interface between ectomycorrhizal fungi and tree roots.

See also

Related Research Articles

<span class="mw-page-title-main">Hypha</span> Long, filamentous structure in fungi and Actinobacteria

A hypha is a long, branching, filamentous structure of a fungus, oomycete, or actinobacterium. In most fungi, hyphae are the main mode of vegetative growth, and are collectively called a mycelium.

<span class="mw-page-title-main">Mycorrhiza</span> Fungus-plant symbiotic association

A mycorrhiza is a symbiotic association between a fungus and a plant. The term mycorrhiza refers to the role of the fungus in the plant's rhizosphere, its root system. Mycorrhizae play important roles in plant nutrition, soil biology, and soil chemistry.

<span class="mw-page-title-main">Truffle</span> Fruiting body of a subterranean ascomycete fungus

A truffle is the fruiting body of a subterranean ascomycete fungus, predominantly one of the many species of the genus Tuber. In addition to Tuber, over one hundred other genera of fungi are classified as truffles including Geopora, Peziza, Choiromyces, and Leucangium. These genera belong to the class Pezizomycetes and the Pezizales order. Several truffle-like basidiomycetes are excluded from Pezizales, including Rhizopogon and Glomus. Truffles are ectomycorrhizal fungi, so they are usually found in close association with tree roots. Spore dispersal is accomplished through fungivores, animals that eat fungi. These fungi have significant ecological roles in nutrient cycling and drought tolerance.

<span class="mw-page-title-main">Arbuscular mycorrhiza</span> Symbiotic penetrative association between a fungus and the roots of a vascular plant

An arbuscular mycorrhiza (AM) is a type of mycorrhiza in which the symbiont fungus penetrates the cortical cells of the roots of a vascular plant forming arbuscules. Arbuscular mycorrhiza is a type of endomycorrhiza along with ericoid mycorrhiza and orchid mycorrhiza .They are characterized by the formation of unique tree-like structures, the arbuscules. In addition, globular storage structures called vesicles are often encountered.

<span class="mw-page-title-main">Root hair</span> Part of plant root

Root hair, or absorbent hairs, are outgrowths of epidermal cells, specialized cells at the tip of a plant root. They are lateral extensions of a single cell and are only rarely branched. They are found in the region of maturation, of the root. Root hair cells improve plant water absorption by increasing root surface area to volume ratio which allows the root hair cell to take in more water. The large vacuole inside root hair cells makes this intake much more efficient. Root hairs are also important for nutrient uptake as they are main interface between plants and mycorrhizal fungi.

<i>Laccaria bicolor</i> Species of fungus

Laccaria bicolor is a small tan-colored mushroom with lilac gills. It is edible but not choice, and grows in mixed birch and pine woods. It is found in the temperate zones of the globe, in late summer and autumn. L. bicolor is an ectomycorrhizal fungus used as a soil inoculant in agriculture and horticulture.

<span class="mw-page-title-main">Mycorrhizal network</span> Underground fungal networks that connect individual plants together

A mycorrhizal network is an underground network found in forests and other plant communities, created by the hyphae of mycorrhizal fungi joining with plant roots. This network connects individual plants together. Mycorrhizal relationships are most commonly mutualistic, with both partners benefiting, but can be commensal or parasitic, and a single partnership may change between any of the three types of symbiosis at different times.

<span class="mw-page-title-main">Mycorrhizal fungi and soil carbon storage</span> Terrestrial ecosystem

Soil carbon storage is an important function of terrestrial ecosystems. Soil contains more carbon than plants and the atmosphere combined. Understanding what maintains the soil carbon pool is important to understand the current distribution of carbon on Earth, and how it will respond to environmental change. While much research has been done on how plants, free-living microbial decomposers, and soil minerals affect this pool of carbon, it is recently coming to light that mycorrhizal fungi—symbiotic fungi that associate with roots of almost all living plants—may play an important role in maintaining this pool as well. Measurements of plant carbon allocation to mycorrhizal fungi have been estimated to be 5 to 20% of total plant carbon uptake, and in some ecosystems the biomass of mycorrhizal fungi can be comparable to the biomass of fine roots. Recent research has shown that mycorrhizal fungi hold 50 to 70 percent of the total carbon stored in leaf litter and soil on forested islands in Sweden. Turnover of mycorrhizal biomass into the soil carbon pool is thought to be rapid and has been shown in some ecosystems to be the dominant pathway by which living carbon enters the soil carbon pool.

<span class="mw-page-title-main">Ectomycorrhiza</span> Non-penetrative symbiotic association between a fungus and the roots of a vascular plant

An ectomycorrhiza is a form of symbiotic relationship that occurs between a fungal symbiont, or mycobiont, and the roots of various plant species. The mycobiont is often from the phyla Basidiomycota and Ascomycota, and more rarely from the Zygomycota. Ectomycorrhizas form on the roots of around 2% of plant species, usually woody plants, including species from the birch, dipterocarp, myrtle, beech, willow, pine and rose families. Research on ectomycorrhizas is increasingly important in areas such as ecosystem management and restoration, forestry and agriculture.

Tuber anniae is a species of truffle in the genus Tuber. The truffle is purported to be uncommon, but is primarily found in the United States Pacific Northwest. Recently the fruiting of closely related taxa have been found in the Baltic Rim countries, primarily forests dominated by Scots pine in eastern Finland.

<span class="mw-page-title-main">Ectomycorrhizal extramatrical mycelium</span>

Ectomycorrhizal extramatrical mycelium is the collection of filamentous fungal hyphae emanating from ectomycorrhizas. It may be composed of fine, hydrophilic hypha which branches frequently to explore and exploit the soil matrix or may aggregate to form rhizomorphs; highly differentiated, hydrophobic, enduring, transport structures.

<i>Cenococcum geophilum</i> Species of fungus

Cenococcum geophilum Fr., synonym Cenococcum graniforme (Sow.) Ferd. and Winge, is an Ascomycete fungal species and is the only member in the genus Cenococcum. It is one of the most common ectomycorrhizal fungal species encountered in forest ecosystems. The geographic distribution of the species is notably cosmopolitan; it is found in ecosystems with a wide range of environmental conditions, and in many cases in high relative frequency. Because of its wide distribution and abundance in forest soils, it is one of the most well-studied ectomycorrhizal fungal species. While the species has long been known to be sterile and not produce asexual or sexual spores, cryptic sexual stages may exist. The hyphae produced by C. geophilum are characterized by their thick (1.5-8 um), straight and jet black appearance with little branching. They usually form monopodial (unbranched) ectomycorrhizas. The mantles of C. geophilum ectomycorrhizas are usually thick with few to many emanating hyphae.

Dark septate endophytes (DSE) are a group of endophytic fungi characterized by their morphology of melanized, septate, hyphae. This group is likely paraphyletic, and contain conidial as well as sterile fungi that colonize roots intracellularly or intercellularly. Very little is known about the number of fungal taxa within this group, but all are in the Ascomycota. They are found in over 600 plant species and across 114 families of angiosperms and gymnosperms and co-occur with other types of mycorrhizal fungi. They have a wide global distribution and can be more abundant in stressed environments. Much of their taxonomy, physiology, and ecology are unknown.

<i>Rhizopogon occidentalis</i> Species of fungus

Rhizopogon occidentalis is an ectomycorrhizal fungus in the family Rhizopogonaceae of the Basidiomycota. It occurs most commonly in western North America in association with two-needle and three-needle pine hosts. They are false truffles with fruiting bodies that are yellow on the surface and pale yellow inside. Their edibility is disputed.

Orchid mycorrhizae are endomycorrhizal fungi which develop symbiotic relationships with the roots and seeds of plants of the family Orchidaceae. Nearly all orchids are myco-heterotrophic at some point in their life cycle. Orchid mycorrhizae are critically important during orchid germination, as an orchid seed has virtually no energy reserve and obtains its carbon from the fungal symbiont.

<span class="mw-page-title-main">Mycorrhiza helper bacteria</span> Group of organisms

Mycorrhiza helper bacteria (MHB) are a group of organisms that form symbiotic associations with both ectomycorrhiza and arbuscular mycorrhiza. MHBs are diverse and belong to a wide variety of bacterial phyla including both Gram-negative and Gram-positive bacteria. Some of the most common MHBs observed in studies belong to the phylas Pseudomonas and Streptomyces. MHBs have been seen to have extremely specific interactions with their fungal hosts at times, but this specificity is lost with plants. MHBs enhance mycorrhizal function, growth, nutrient uptake to the fungus and plant, improve soil conductance, aid against certain pathogens, and help promote defense mechanisms. These bacteria are naturally present in the soil, and form these complex interactions with fungi as plant root development starts to take shape. The mechanisms through which these interactions take shape are not well-understood and needs further study.

Rhizopogon amylopogon is a sub-genus of Rhizopogon containing seven species.

Leohumicola verrucosa is a heat-resistant, endophytic, ericoid mycorrhizal soil fungus. Its species name refers to rough, warty or spine-like ornamentations on its aleurioconidia. L. verrucosa was first described from samples of soil exposed to fire; among these it was especially abundant in regularly burned blueberry fields in eastern Canada. L. verrucosa forms mycorrhizal relationships with a wide variety and distribution of species in the Ericaceae family.

<span class="mw-page-title-main">Mucoromycota</span> Diverse group of molds

Mucoromycota is a division within the kingdom fungi. It includes a diverse group of various molds, including the common bread molds Mucor and Rhizopus. It is a sister phylum to Dikarya.

<span class="mw-page-title-main">Common symbiosis signaling pathway</span>

The common symbiosis signaling pathway (CSSP) is a signaling cascade in plants that allows them to interact with symbiotic microbes. It corresponds to an ancestral pathway that plants use to interact with arbuscular mycorrhizal fungi (AMF). It is known as "common" because different evolutionary younger symbioses also use this pathway, notably the root nodule symbiosis with nitrogen-fixing rhizobia bacteria. The pathway is activated by both Nod-factor perception, as well as by Myc-factor perception that are released from AMF. The pathway is distinguished from the pathogen recognition pathways, but may have some common receptors involved in both pathogen recognition as well as CSSP. A recent work by Kevin Cope and colleagues showed that ectomycorrhizae also uses CSSP components such as Myc-factor recognition.

References

  1. Smith, Sally, Read, David (2002). "Chapter 6: Structure and Development of Ectomycorrhizal roots". Mycorrhizal Symbiosis. IV–V: 163–232. doi:10.1016/B978-012652840-4/50007-3.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. 1 2 Brundrett, Mark C.; Tedersoo, Leho (December 2018). "Evolutionary history of mycorrhizal symbioses and global host plant diversity". New Phytologist. 220 (4): 1108–1115. doi: 10.1111/nph.14976 . ISSN   0028-646X. PMID   29355963.
  3. 1 2 Becquer, Adeline; Guerro-Galan, Carmen (2019). "Chapter Three: The Ectomychorrhizal contribution to tree nutrition". Advances in Botanical Research. 89: 77–126. doi:10.1016/bs.abr.2018.11.003. S2CID   92840690.
  4. Nylund, Jan‐Erik (December 1980). "Symplastic Continuity During Hartig Net Formation in Norway Spruce Ectomycorrhizae". New Phytologist. 86 (4): 373–378. doi:10.1111/j.1469-8137.1980.tb01678.x. ISSN   0028-646X.
  5. Kottke, I.; Oberwinkler, F. (March 1987). "The cellular structure of the Hartig net: coenocytic and transfer cell‐like organization". Nordic Journal of Botany. 7 (1): 85–95. doi:10.1111/j.1756-1051.1987.tb00919.x. ISSN   0107-055X.
  6. Le Quéré, Antoine; Wright, Derek P.; Söderström, Bengt; Tunlid, Anders; Johansson, Tomas (July 2005). "Global Patterns of Gene Regulation Associated with the Development of Ectomycorrhiza Between Birch ( Betula pendula Roth.) and Paxillus involutus (Batsch) Fr". Molecular Plant-Microbe Interactions. 18 (7): 659–673. doi: 10.1094/MPMI-18-0659 . ISSN   0894-0282. PMID   16042012.
  7. Horan, D. P.; Chilvers, G. A.; Lapeyrie, F. F. (August 1988). "Time sequence of the infection process eucalypt ectomycorrhizas". New Phytologist. 109 (4): 451–458. doi: 10.1111/j.1469-8137.1988.tb03720.x . ISSN   0028-646X.
  8. Daguerre, Yohann; Basso, Veronica; Hartmann-Wittulski, Sebastian; Schellenberger, Romain; Meyer, Laura; Bailly, Justine; Kohler, Annegret; Plett, Jonathan M.; Martin, Francis; Veneault-Fourrey, Claire (2020-11-23). "The mutualism effector MiSSP7 of Laccaria bicolor alters the interactions between the poplar JAZ6 protein and its associated proteins". Scientific Reports. 10 (1): 20362. Bibcode:2020NatSR..1020362D. doi: 10.1038/s41598-020-76832-6 . ISSN   2045-2322. PMC   7683724 . PMID   33230111. S2CID   227152666.
  9. Su, Chao (April 2023). "Pectin modifications at the symbiotic interface". New Phytologist. 238 (1): 25–32. doi: 10.1111/nph.18705 . ISSN   0028-646X. PMID   36565041. S2CID   255115317.
  10. Chowdhury, Jamil; Kemppainen, Minna; Delhomme, Nicolas; Shutava, Iryna; Zhou, Jingjing; Takahashi, Junko; Pardo, Alejandro G.; Lundberg‐Felten, Judith (October 2022). "Laccaria bicolor pectin methylesterases are involved in ectomycorrhiza development with Populus tremula × Populus tremuloides". New Phytologist. 236 (2): 639–655. doi:10.1111/nph.18358. ISSN   0028-646X. PMC   9796311 . PMID   35794841.
  11. Brundrett, Mark C.; Tedersoo, Leho (2020-09-01). "Resolving the mycorrhizal status of important northern hemisphere trees". Plant and Soil. 454 (1): 3–34. Bibcode:2020PlSoi.454....3B. doi: 10.1007/s11104-020-04627-9 . ISSN   1573-5036. S2CID   220931730.
  12. 1 2 Sa, Gang; Yao, Jun; Deng, Chen; Liu, Jian; Zhang, Yinan; Zhu, Zhimei; Zhang, Yuhong; Ma, Xujun; Zhao, Rui; Lin, Shanzhi; Lu, Cunfu; Polle, Andrea; Chen, Shaoliang (June 2019). "Amelioration of nitrate uptake under salt stress by ectomycorrhiza with and without a Hartig net". New Phytologist. 222 (4): 1951–1964. doi:10.1111/nph.15740. ISSN   0028-646X. PMC   6594093 . PMID   30756398.
  13. Ori, Francesca; Leonardi, Marco; Faccio, Antonella; Sillo, Fabiano; Iotti, Mirco; Pacioni, Giovanni; Balestrini, Raffaella (2020-11-01). "Synthesis and ultrastructural observation of arbutoid mycorrhizae of black truffles (Tuber melanosporum and T. aestivum)". Mycorrhiza. 30 (6): 715–723. Bibcode:2020Mycor..30..715O. doi:10.1007/s00572-020-00985-5. ISSN   1432-1890. PMC   7591440 . PMID   33079241.
  14. Nehls, Uwe; Plassard, Claude (2018-06-11). "Nitrogen and phosphate metabolism in ectomycorrhizas". New Phytologist. 220 (4): 1047–1058. doi: 10.1111/nph.15257 . ISSN   0028-646X. PMID   29888395.
  15. Maria del Carmen Guerrero-Galan, Gabriella Houdinet, Amandine Delteil, Kevin Garcia, Sabine Zimmermann. Unravelling nutrient exchange in ectomycorrhizal symbiosis contributing to plant potassium nutrition. International Conference Saclay Plant Sciences (SPS) 2018, Jul 2018, Paris, France. ⟨hal-01843727⟩
  16. Guerrero‐Galán, C., Delteil, A., Garcia, K., Houdinet, G., Conéjéro, G., Gaillard, I., Sentenac, H. and Zimmermann, S.D. (2018), Plant potassium nutrition in ectomycorrhizal symbiosis: properties and roles of the three fungal TOK potassium channels in Hebeloma cylindrosporum. Environ Microbiol, 20: 1873-1887. doi:10.1111/1462-2920.14122
  17. Ruytinx, Joske; Kafle, Arjun; Usman, Muhammad; Coninx, Laura; Zimmermann, Sabine D.; Garcia, Kevin (2020-03-01). "Micronutrient transport in mycorrhizal symbiosis; zinc steals the show". Fungal Biology Reviews. 34 (1): 1–9. doi:10.1016/j.fbr.2019.09.001. hdl: 1942/31110 . ISSN   1749-4613. S2CID   208574971.
  18. Heinonsalo, Jussi; Juurola, Eija; Linden, Aki; Pumpanen, Jukka (2015-01-01). "Ectomycorrhizal fungi affect Scots pine photosynthesis through nitrogen and water economy, not only through increased carbon demand". Environmental and Experimental Botany. 109: 103–112. doi:10.1016/j.envexpbot.2014.08.008. ISSN   0098-8472.
  19. Roy, R., Reinders, A., Ward, J. M., & McDonald, T. R. (2020). Understanding transport processes in lichen, Azolla-cyanobacteria, ectomycorrhiza, endomycorrhiza, and rhizobia-legume symbiotic interactions. F1000Research, 9, F1000 Faculty Rev-39. https://doi.org/10.12688/f1000research.19740.1
  20. 1 2 Stuart, Emiko K.; Plett, Krista L. (2020). "Digging Deeper: In Search of the Mechanisms of Carbon and Nitrogen Exchange in Ectomycorrhizal Symbioses". Frontiers in Plant Science. 10: 1658. doi: 10.3389/fpls.2019.01658 . ISSN   1664-462X. PMC   6971170 . PMID   31993064.
  21. Salzer, P.; Hager, A. (December 1991). "Sucrose Utilization of the Ectomycorrhizal Fungi Amanita muscaria and Hebeloma crustuliniforme Depends on the Cell Wall‐bound Invertase Activity of their Host Picea abies". Botanica Acta. 104 (6): 439–445. doi:10.1111/j.1438-8677.1991.tb00256.x. ISSN   0932-8629.
  22. López, Mónica Fajardo; Männer, Philipp; Willmann, Anita; Hampp, Rüdiger; Nehls, Uwe (April 2007). "Increased trehalose biosynthesis in Hartig net hyphae of ectomycorrhizas". New Phytologist. 174 (2): 389–398. doi: 10.1111/j.1469-8137.2007.01983.x . ISSN   0028-646X. PMID   17388901.
  23. Shi, W, Zhang, Y, Chen, S, Polle, A, Rennenberg, H, Luo, Z‐B. Physiological and molecular mechanisms of heavy metal accumulation in nonmycorrhizal versus mycorrhizal plants. Plant Cell Environ. 2019; 42: 1087– 1103. https://doi.org/10.1111/pce.13471
  24. Frey, B.; Zierold, K.; Brunner, I. (November 2000). "Extracellular complexation of Cd in the Hartig net and cytosolic Zn sequestration in the fungal mantle of Picea abies – Hebeloma crustuliniforme ectomycorrhizas". Plant, Cell & Environment. 23 (11): 1257–1265. doi: 10.1046/j.1365-3040.2000.00637.x . ISSN   0140-7791.
  25. Money, Nicholas P (2011). Mushroom. Oxford: Oxford University Press. p. 71.
  26. Maser, C; Claridge, A W; Trappe, J M (2008). Trees, Truffles, and Beasts: How Forests Function . New Brunswick: Rutgers University Press. p.  54.