Potassium deficiency (plants)

Last updated
Potassium-deficiency symptoms on a tomato leaf Tomate Blatt Kalimangel.jpg
Potassium-deficiency symptoms on a tomato leaf
A potassium-deficient maize plant. Necrosis of the leaf margin is most severe on the oldest leaves. K-deficient maize on Cedara 2 2003-01-13.jpg
A potassium-deficient maize plant. Necrosis of the leaf margin is most severe on the oldest leaves.
Potassium-deficiency symptoms in beans K-deficient dry bean 2 2012 02 16 Cedara 037.jpg
Potassium-deficiency symptoms in beans
A potassium-deficient grape leaf PotasDed.jpg
A potassium-deficient grape leaf

Potassium deficiency, also known as potash deficiency, is a plant disorder that is most common on light, sandy soils, because potassium ions (K+) are highly soluble and will easily leach from soils without colloids. [1] Potassium deficiency is also common in chalky or peaty soils with a low clay content. It is also found on heavy clays with a poor structure.

Contents

Role of potassium in plants

The main role of potassium is to provide the ionic environment for metabolic processes in the cytosol, and as such functions as a regulator of various processes including growth regulation. [2] Plants require potassium ions (K+) for protein synthesis and for the opening and closing of stomata, which is regulated by proton pumps to make surrounding guard cells either turgid or flaccid. A deficiency of potassium ions can impair a plant's ability to maintain these processes. Potassium also functions in other physiological processes such as photosynthesis, protein synthesis, activation of some enzymes, phloem solute transport of photoassimilates into source organs, and maintenance of cation:anion balance in the cytosol and vacuole. [3]

Symptoms of potassium deficiency

Typical symptoms of potassium deficiency in plants include brown scorching and curling of leaf tips as well as chlorosis (yellowing) between leaf veins. Purple spots may also appear on the leaf undersides. Plant growth, root development, and seed and fruit development are usually reduced in potassium-deficient plants. Often, potassium deficiency symptoms first appear on older (lower) leaves because potassium is a mobile nutrient, meaning that a plant can allocate potassium to younger leaves when it is K deficient. [3] Deficient plants may be more prone to frost damage and disease, and their symptoms can often be confused with wind scorch or drought. The deficiency is most common in several important fruit and vegetable crops; notably potatoes, brassicas, tomatoes, apples, currants, gooseberries, and raspberries. Sugar beets, cereals, and clover are also commonly affected. Specific symptoms for each of these plants are as follows: [4]

In potatoes, tuber size is much reduced and crop yield is low. The leaves of the plant appear dull and are often blue-green in color with interveinal chlorosis. Leaves will also develop small, dark brown spots on the undersides and a bronzed appearance on the upper surfaces.

In brassicas, leaves are blue-green in color and may have a low degree of interveinal chlorosis. Scorching along the outside edges of leaves is common, and leaves are often tough in texture due to slow growth.

In tomatoes, the stems are woody and growth is slow. Leaves are blue-green in color, and the interveinal area often fades to a pale gray color. Leaves may also have a bronzed appearance and yellow and orange patches may develop on some of the leaflets. Fruits often ripen unevenly and sometimes have green patches near the stalks.

In apples, leaves are scorched around the edges, and interveinal chlorosis is common. Apple fruits often have a slightly acidic or woody taste.

In gooseberries, currants, and raspberries, dieback of shoots and branches is common and although the plant may produce many blossom buds in the early stages of deficiency, fruit yields turn out low and the fruits are of poor quality.

Potassium deficiency and plant disease

For many species, potassium-deficient plants are more susceptible to frost damage and certain diseases than plants with adequate potassium levels. Increased disease resistance associated with adequate potassium levels indicates that potassium has roles in providing disease resistance, and increasing the potassium levels of deficient plants have been shown to decrease the intensity of many diseases. However, increasing potassium concentration above the optimal level does not provide greater disease resistance. In agriculture, some cultivars are more efficient at K uptake due to genetic variations, and often these plants have increased disease resistance. [1] The mechanisms involved with increased host resistance and potassium include a decreased cell permeability and decreased susceptibility to tissue penetration. Silica, which is accumulated in greater quantities when adequate potassium is present, is incorporated into cell walls, strengthening the epidermal layer which functions as a physical barrier to pathogens. Potassium has also been implicated to have a role in the proper thickening of cell walls. [1] To aid in potassium deficiency, farmers and many monoculture crop producers use vermiculite as a form of nutrition, soil aeration assistance as well as water retention to aid in nutrient poor environments. [5]

Plant adaptation to low-K environments

When potassium is readily available in the soil, a plant absorb it through plasma membrane channels and high-affinity H+/K+ transporters and store it in vacuoles. However, when K+ is present at very low concentrations, vacuolar K+ is used to feed the cytoplasm.

This process is initiated by a Ca2+-dependent signaling network which induces the release of K+ from the vacuole to the cytosol.

Prevention and cure

The most widely used potassium fertilizer is potassium chloride (muriate of potash). [6] Other inorganic potassium fertilizers include potassium nitrate, potassium sulfate, and monopotassium phosphate. Wood ash also has high potassium content but must be used cautiously due its effect on pH level. [7] Adequate moisture is necessary for effective potassium uptake; low soil water reduces K uptake by plant roots. Liming acidic soils can increase potassium retention in some soils by reducing leaching; [1] practices that increase soil organic matter can also increase potassium retention.

Related Research Articles

<span class="mw-page-title-main">Vacuole</span> Membrane-bound organelle in cells containing fluid

A vacuole is a membrane-bound organelle which is present in plant and fungal cells and some protist, animal, and bacterial cells. Vacuoles are essentially enclosed compartments which are filled with water containing inorganic and organic molecules including enzymes in solution, though in certain cases they may contain solids which have been engulfed. Vacuoles are formed by the fusion of multiple membrane vesicles and are effectively just larger forms of these. The organelle has no basic shape or size; its structure varies according to the requirements of the cell.

<span class="mw-page-title-main">Physiological plant disorder</span>

Physiological plant disorders are caused by non-pathological conditions such as poor light, adverse weather, water-logging, phytotoxic compounds or a lack of nutrients, and affect the functioning of the plant system. Physiological disorders are distinguished from plant diseases caused by pathogens, such as a virus or fungus. While the symptoms of physiological disorders may appear disease-like, they can usually be prevented by altering environmental conditions. However, once a plant shows symptoms of a physiological disorder, it is likely that that season's growth or yield will be reduced.

Boron deficiency is a common deficiency of the micronutrient boron in plants. It is the most widespread micronutrient deficiency around the world and causes large losses in crop production and crop quality. Boron deficiency affects vegetative and reproductive growth of plants, resulting in inhibition of cell expansion, death of meristem, and reduced fertility.

<span class="mw-page-title-main">Calcium deficiency (plant disorder)</span>

Calcium (Ca) deficiency is a plant disorder that can be caused by insufficient level of biologically available calcium in the growing medium, but is more frequently a product of low transpiration of the whole plant or more commonly the affected tissue. Plants are susceptible to such localized calcium deficiencies in low or non-transpiring tissues because calcium is not transported in the phloem. This may be due to water shortages, which slow the transportation of calcium to the plant, poor uptake of calcium through the stem, or too much nitrogen in the soil.

<span class="mw-page-title-main">Iron deficiency (plant disorder)</span>

Iron (Fe) deficiency is a plant disorder also known as "lime-induced chlorosis". It can be confused with manganese deficiency. Soil iron concentration is high, but can become unavailable for absorption if soil pH is higher than 6.5. Excess of elements such as manganese in the soil can interfere with plant iron uptake triggering iron deficiency.

<span class="mw-page-title-main">Manganese deficiency (plant)</span>

Manganese (Mn) deficiency is a plant disorder that is often confused with, and occurs with, iron deficiency. Most common in poorly drained soils, also where organic matter levels are high. Manganese may be unavailable to plants where pH is high.

<span class="mw-page-title-main">Nitrogen deficiency</span> Nutrient deficiency

Nitrogen deficiency is a deficiency of nitrogen in plants. This can occur when organic matter with high carbon content, such as sawdust, is added to soil. Soil organisms use any nitrogen available to break down carbon sources, making nitrogen unavailable to plants. This is known as "robbing" the soil of nitrogen. All vegetables apart from nitrogen fixing legumes are prone to this disorder.

<span class="mw-page-title-main">Potassium in biology</span> Use of Potassium by organisms

Potassium is the main intracellular ion for all types of cells, while having a major role in maintenance of fluid and electrolyte balance. Potassium is necessary for the function of all living cells, and is thus present in all plant and animal tissues. It is found in especially high concentrations within plant cells, and in a mixed diet, it is most highly concentrated in fruits. The high concentration of potassium in plants, associated with comparatively very low amounts of sodium there, historically resulted in potassium first being isolated from the ashes of plants (potash), which in turn gave the element its modern name. The high concentration of potassium in plants means that heavy crop production rapidly depletes soils of potassium, and agricultural fertilizers consume 93% of the potassium chemical production of the modern world economy.

<span class="mw-page-title-main">Magnesium in biology</span> Use of Magnesium by organisms

Magnesium is an essential element in biological systems. Magnesium occurs typically as the Mg2+ ion. It is an essential mineral nutrient (i.e., element) for life and is present in every cell type in every organism. For example, adenosine triphosphate (ATP), the main source of energy in cells, must bind to a magnesium ion in order to be biologically active. What is called ATP is often actually Mg-ATP. As such, magnesium plays a role in the stability of all polyphosphate compounds in the cells, including those associated with the synthesis of DNA and RNA.

<span class="mw-page-title-main">Plant nutrition</span> Study of the chemical elements and compounds necessary for normal plant life

Plant nutrition is the study of the chemical elements and compounds necessary for plant growth and reproduction, plant metabolism and their external supply. In its absence the plant is unable to complete a normal life cycle, or that the element is part of some essential plant constituent or metabolite. This is in accordance with Justus von Liebig’s law of the minimum. The total essential plant nutrients include seventeen different elements: carbon, oxygen and hydrogen which are absorbed from the air, whereas other nutrients including nitrogen are typically obtained from the soil.

<span class="mw-page-title-main">Chlorosis</span> Medical condition in plants

In botany, chlorosis is a condition in which leaves produce insufficient chlorophyll. As chlorophyll is responsible for the green color of leaves, chlorotic leaves are pale, yellow, or yellow-white. The affected plant has little or no ability to manufacture carbohydrates through photosynthesis and may die unless the cause of its chlorophyll insufficiency is treated and this may lead to a plant disease called rusts, although some chlorotic plants, such as the albino Arabidopsis thaliana mutant ppi2, are viable if supplied with exogenous sucrose.

A calcifuge is a plant that does not tolerate alkaline (basic) soil. The word is derived from the Latin 'to flee from chalk'. These plants are also described as ericaceous, as the prototypical calcifuge is the genus Erica (heaths). It is not the presence of carbonate or hydroxide ions per se that these plants cannot tolerate, but the fact that under alkaline conditions, iron becomes less soluble. Consequently, calcifuges grown on alkaline soils often develop the symptoms of iron deficiency, i.e. interveinal chlorosis of new growth. There are many horticultural plants which are calcifuges, most of which require an 'ericaceous' compost with a low pH, composed principally of Sphagnum moss peat. Alternatively sulphur chips may be used to lower soil pH.

Magnesium deficiency is an electrolyte disturbance in which there is a low level of magnesium in the body. It can result in multiple symptoms. Symptoms include tremor, poor coordination, muscle spasms, loss of appetite, personality changes, and nystagmus. Complications may include seizures or cardiac arrest such as from torsade de pointes. Those with low magnesium often have low potassium.

<span class="mw-page-title-main">Guard cell</span> Paired cells that control the stomatal aperture

Guard cells are specialized plant cells in the epidermis of leaves, stems and other organs that are used to control gas exchange. They are produced in pairs with a gap between them that forms a stomatal pore. The stomatal pores are largest when water is freely available and the guard cells become turgid, and closed when water availability is critically low and the guard cells become flaccid. Photosynthesis depends on the diffusion of carbon dioxide (CO2) from the air through the stomata into the mesophyll tissues. Oxygen (O2), produced as a byproduct of photosynthesis, exits the plant via the stomata. When the stomata are open, water is lost by evaporation and must be replaced via the transpiration stream, with water taken up by the roots. Plants must balance the amount of CO2 absorbed from the air with the water loss through the stomatal pores, and this is achieved by both active and passive control of guard cell turgor pressure and stomatal pore size.

<span class="mw-page-title-main">Micronutrient deficiency</span> Medical condition

Micronutrient deficiency is defined as the sustained insufficient supply of vitamins and minerals needed for growth and development, as well as to maintain optimal health. Since some of these compounds are considered essentials, micronutrient deficiencies are often the result of an inadequate intake. However, it can also be associated to poor intestinal absorption, presence of certain chronic illnesses and elevated requirements.

<span class="mw-page-title-main">Sodium in biology</span> Use of Sodium by organisms

Sodium ions are necessary in small amounts for some types of plants, but sodium as a nutrient is more generally needed in larger amounts by animals, due to their use of it for generation of nerve impulses and for maintenance of electrolyte balance and fluid balance. In animals, sodium ions are necessary for the aforementioned functions and for heart activity and certain metabolic functions. The health effects of salt reflect what happens when the body has too much or too little sodium. Characteristic concentrations of sodium in model organisms are: 10 mM in E. coli, 30 mM in budding yeast, 10 mM in mammalian cell and 100 mM in blood plasma.

<span class="mw-page-title-main">Phosphorus deficiency</span>

Phosphorus deficiency is a plant disorder associated with insufficient supply of phosphorus. Phosphorus refers here to salts of phosphates (PO43−), monohydrogen phosphate (HPO42−), and dihydrogen phosphate (H2PO4). These anions readily interconvert, and the predominant species is determined by the pH of the solution or soil. Phosphates are required for the biosynthesis of genetic material as well as ATP, essential for life. Phosphorus deficiency can be controlled by applying sources of phosphorus such as bone meal, rock phosphate, manure, and phosphate-fertilizers.

<span class="mw-page-title-main">Zinc deficiency (plant disorder)</span>

Zinc deficiency occurs when plant growth is limited because the plant cannot take up sufficient quantities of this essential micronutrient from its growing medium. Zinc is one of the most important micronutrients.

<span class="mw-page-title-main">Molybdenum deficiency (plant disorder)</span>

Molybdenum (Mo) deficiency occurs when plant growth is limited because the plant cannot take up sufficient quantities of this essential micronutrient from its growing medium. For crops growing in soil, this may be a result of low concentrations of Mo in the soil as a whole, or because the soil Mo is held in forms that are not available to plants – sorption of Mo is strongest in acid soils.

<span class="mw-page-title-main">High Affinity K+ transporter HAK5</span>

High Affinity K+ transporter HAK5 is a transport protein found on the cell surface membrane of plants under conditions of potassium deprivation. It is believed to act as a symporter for protons and the potassium ion, K+. Firstly discovered in barley, receiving the name of HvHAK1, it was soon after identified in the model plant Arabidopsis thaliana and named HAK5. These transporters belongs to the subgroup I of the KT-HAK-KUP family of plant proteins with obvious homology with both bacterial and fungal transport systems, which experienced a major diversification following land conquest. KT-HAK-KUP transporters are one of four different types of K+ transporter within the cell, but are unique as they do not have a putative pore forming domain like the other three; Shaker channels, KCO channels, HKT transporters. It is activated when the plant is situated in low soil with low potassium concentration, and has been shown to be located in higher concentration in the epidermis and vasculature of K+ deprived plants. By turning on, it increases the plants affinity (uptake) of potassium. Potassium plays a vital role in the plants growth, reproduction, immunity, ion homeostasis, and osmosis, which ensures the plants survival. It is the highest cationic molecule within the plant, accounting for 10% of the plants dry weight, which makes its uptake into the plant important. Each plant species has its own HAK5 transporter that is specific to that species and has different levels of affinity to K+. To operate and activate the HAK5 transporter, the external concentration of K+ must be lower than 10μM and up to 200μM. In Arabidopsis plants, when external potassium concentration is lower than 10μM, it is only HAK5 that is involved with the uptake of K+, then between 10 and 200μM both HAK5 and AKT1 are involved with the uptake of K+. HAK5 is coupled with CBL9/CIPK23 kinase's although the mechanism behind this has not yet been understood.

References

  1. 1 2 3 4 Datnoff, L.E. et al. Mineral Nutrition and Plant Disease. The American Phytopathological Society, 2007 ISBN   0-89054-346-1
  2. Leigh, R. A.; Wyn Jones, R. G. (1984). "A Hypothesis Relating Critical Potassium Concentrations for Growth to the Distribution and Functions of This Ion in the Plant Cell" (PDF). New Phytologist. 97 (1): 1–13. doi: 10.1111/j.1469-8137.1984.tb04103.x . JSTOR   2434189.
  3. 1 2 Hopkins, W.G. and Huner, N.P.A. Introduction to Plant Physiology 4th edition
  4. "Potassium deficiency in plants" Archived 2010-10-28 at the Wayback Machine , 13 December 2001, 17 November 2010.
  5. Wang, Min; Zheng, Qingsong; Shen, Qirong; Guo, Shiwei (April 2013). "The Critical Role of Potassium in Plant Stress Response". International Journal of Molecular Sciences. 14 (4): 7370–7390. doi: 10.3390/ijms14047370 . PMC   3645691 . PMID   23549270.
  6. DEFRA (2010). Fertiliser manual (RB209) (8th ed.). Norwich: TSO. ISBN   9780112432869.
  7. "Wood ash: using in the garden". www.rhs.org.uk. Retrieved 2020-08-20.

[1]

  1. Tang, Ren-Jie; Zhao, Fu-Geng; Yang, Yang; Wang, Chao; Li, Kunlun; Kleist, Thomas J.; Lemaux, Peggy G.; Luan, Sheng (April 2020). "A calcium signalling network activates vacuolar K+ remobilization to enable plant adaptation to low-K environments". Nature Plants. 6 (4): 384–393. doi:10.1038/s41477-020-0621-7. ISSN   2055-0278. PMID   32231253. S2CID   214704540.