Biofertilizer

Last updated
Blue-green algae cultured in specific media. Blue-green algae can be helpful in agriculture as they have the capability to fix atmospheric nitrogen to soil. This nitrogen is helpful to the crops. Blue-green algae is used as a biofertilizer. Blue-green algae cultured in specific media.jpg
Blue-green algae cultured in specific media. Blue-green algae can be helpful in agriculture as they have the capability to fix atmospheric nitrogen to soil. This nitrogen is helpful to the crops. Blue-green algae is used as a biofertilizer.

A biofertilizer is a substance which contains living micro-organisms which, when applied to seeds, plant surfaces, or soil, colonize the rhizosphere or the interior of the plant and promotes growth by increasing the supply or availability of primary nutrients to the host plant. [1] Biofertilizers add nutrients through the natural processes of nitrogen fixation, solubilizing phosphorus, and stimulating plant growth through the synthesis of growth-promoting substances. The micro-organisms in biofertilizers restore the soil's natural nutrient cycle and build soil organic matter. Through the use of biofertilizers, healthy plants can be grown, while enhancing the sustainability and the health of the soil. Biofertilizers can be expected to reduce the use of synthetic fertilizers and pesticides, but they are not yet able to replace their use. As of 2024, more than 340 biofertilizer products have been approved for commercial use in the US. [2]

Contents

Composition

Biofertilizers provide "eco-friendly" organic agro-input. Rhizobium , Azotobacter , Azospirilium and blue green algae(BGA) have been in use a long time. Rhizobium inoculant is used for leguminous crops. Azotobacter can be used with crops like wheat, maize, mustard, cotton, potato and other vegetable crops. Azospirillum inoculations are recommended mainly for sorghum, millets, maize, sugarcane and wheat. Blue green algae belonging to the general cyanobacteria genera, Nostoc , Anabaena , Tolypothrix and Aulosira , fix atmospheric nitrogen and are used as inoculations for paddy crop grown both under upland and low-land conditions. Anabaena in association with water fern Azolla contributes nitrogen up to 60 kg/ha/season and also enriches soils with organic matter. [3] [4] Seaweeds are rich in various types of mineral elements (potassium, phosphorus, trace elements etc.) hence they are extensively used as manure-replacement by people of coastal districts[ citation needed ]. Seaweed-fertilizer also helps in breaking down clays.[ citation needed ] Fucus is used by Irish people as biofertilizer on a large scale.[ citation needed ] In tropical countries bottom mud of dried up ponds which contain abundant blue green algae is regularly used as biofertilizer in fields.[ citation needed ]

Mycorrhizal fungi promotes bioavailability of nutrients for plants. The root-like Mycelium of a fungus.jpg
Mycorrhizal fungi promotes bioavailability of nutrients for plants.

Bacteria

Plant-Growth Promoting Microorganisms:

Fungi

Mycorrhizal fungi such as:

Vermicompost-tea is often used in organic farming as biofertilizer. Vermikampost belarus.jpg
Vermicompost-tea is often used in organic farming as biofertilizer.

Archaea

Organic matter

Kelp has very high nutrient density Ascophyllum nodosum.jpg
Kelp has very high nutrient density

Seaweed and blue green algae:

Duckweed has been studied as a biofertilizer Common Duckweed (Lemna minor), Craigleith, Edinburgh - geograph.org.uk - 5454611.jpg
Duckweed has been studied as a biofertilizer

Cyanobacteria:

Mechanisms

Biofertilizers work through multiple mechanisms. Plant-Growth Promoting Rhizobacteria (PGPR) and Mycorrhiza are generally thought to increase the fixation of atmospheric nitrogen, [17] increase bioavailability of minerals in the soil [18] and synthesize phytohormones that promote growth, such as Gibberellin and Auxin. [7] [11] Another mechanism proposed is the AAC-deaminase production of Bacillus species, which prevents excessive increases in the synthesis of ethylene under various stress conditions. [19]

Benefits

Biofertilizers are cost-effective and ecofriendly in nature, and their continuous usage has been shown to enhance soil fertility. [20] Besides promoting growth by multiple mechanisms, biofertilizers produces substances suppressing phytopathogens, guarding plants from abiotic and biotic stresses and detoxification of belowground pollutants. [21] Extensive use of agrochemicals in agricultural practices has been found to cause environmental disturbances and public health hazards affecting food security and sustainability in agriculture. [22] Biofertilizers offers an alternative solution for such agrochemicals, and show yield increase of up to about 10–40% by increasing protein contents, essential amino acids, and vitamins, and by nitrogen fixation. [20]

Since a bio-fertilizer is technically living, it can symbiotically associate with plant roots. Involved microorganisms could readily and safely convert complex organic material into simple compounds, so that they are easily taken up by the plants. Microorganism function is in long duration, causing improvement of the soil fertility. It maintains the natural habitat of the soil. It increases crop yield by 20-30%, replaces chemical nitrogen and phosphorus by 30%, and stimulates plant growth. It can also provide protection against drought and some soil-borne diseases. It has also been shown that to produce a larger quantity of crops, biofertilizers with the ability of nitrogen fixation and phosphorus solubilizing would lead to the greatest possible effect. [23] They advance shoot and root growth of many crops versus control groups. [24] This can be important when implementing new seed growth.

Future Research

Biofertilizers have been shown to have varying effects in different environments, [25] and even within the same environment. This is something that many scientists have been working on, however there is no perfect solution at this time. They however, have been shown to have the most profound effects in drier climates. [23] In the future, it is hoped that biofertilizers effects will be better controlled and regulated in all environments, as well as analysis targeted at specific species.

See also

Related Research Articles

Nitrogen fixation is a chemical process by which molecular dinitrogen is converted into ammonia. It occurs both biologically and abiologically in chemical industries. Biological nitrogen fixation or diazotrophy is catalyzed by enzymes called nitrogenases. These enzyme complexes are encoded by the Nif genes and contain iron, often with a second metal.

<span class="mw-page-title-main">Rhizobia</span> Nitrogen fixing soil bacteria

Rhizobia are diazotrophic bacteria that fix nitrogen after becoming established inside the root nodules of legumes (Fabaceae). To express genes for nitrogen fixation, rhizobia require a plant host; they cannot independently fix nitrogen. In general, they are gram negative, motile, non-sporulating rods.

<span class="mw-page-title-main">Green manure</span> Organic material left on an agricultural field to be used as a mulch or soil amendment

In agriculture, a green manure is a crop specifically cultivated to be incorporated into the soil while still green. Typically, the green manure's biomass is incorporated with a plow or disk, as is often done with (brown) manure. The primary goal is to add organic matter to the soil for its benefits. Green manuring is often used with legume crops to add nitrogen to the soil for following crops, especially in organic farming, but is also used in conventional farming.

<span class="mw-page-title-main">Cover crop</span> Crop planted to manage erosion and soil quality

In agriculture, cover crops are plants that are planted to cover the soil rather than for the purpose of being harvested. Cover crops manage soil erosion, soil fertility, soil quality, water, weeds, pests, diseases, biodiversity and wildlife in an agroecosystem—an ecological system managed and shaped by humans. Cover crops can increase microbial activity in the soil, which has a positive effect on nitrogen availability, nitrogen uptake in target crops, and crop yields. Cover crops reduce water pollution risks and remove CO2 from the atmosphere .Cover crops may be an off-season crop planted after harvesting the cash crop. Cover crops are nurse crops in that they increase the survival of the main crop being harvested, and are often grown over the winter. In the United States, cover cropping may cost as much as $35 per acre.

Diazotrophs are bacteria and archaea that fix atmospheric nitrogen (N2) in the atmosphere into bioavailable forms such as ammonia.

<span class="mw-page-title-main">Root nodule</span> Plant part

Root nodules are found on the roots of plants, primarily legumes, that form a symbiosis with nitrogen-fixing bacteria. Under nitrogen-limiting conditions, capable plants form a symbiotic relationship with a host-specific strain of bacteria known as rhizobia. This process has evolved multiple times within the legumes, as well as in other species found within the Rosid clade. Legume crops include beans, peas, and soybeans.

<i>Azotobacter</i> Genus of bacteria

Azotobacter is a genus of usually motile, oval or spherical bacteria that form thick-walled cysts and may produce large quantities of capsular slime. They are aerobic, free-living soil microbes that play an important role in the nitrogen cycle in nature, binding atmospheric nitrogen, which is inaccessible to plants, and releasing it in the form of ammonium ions into the soil. In addition to being a model organism for studying diazotrophs, it is used by humans for the production of biofertilizers, food additives, and some biopolymers. The first representative of the genus, Azotobacter chroococcum, was discovered and described in 1901 by Dutch microbiologist and botanist Martinus Beijerinck. Azotobacter species are Gram-negative bacteria found in neutral and alkaline soils, in water, and in association with some plants.

Azotobacter vinelandii is Gram-negative diazotroph that can fix nitrogen while grown aerobically. These bacteria are easily cultured and grown.

<span class="mw-page-title-main">Organic fertilizer</span> Fertilizer developed from natural processes

Organic fertilizers are fertilizers that are naturally produced. Fertilizers are materials that can be added to soil or plants, in order to provide nutrients and sustain growth. Typical organic fertilizers include all animal waste including meat processing waste, manure, slurry, and guano; plus plant based fertilizers such as compost; and biosolids. Inorganic "organic fertilizers" include minerals and ash. Organic refers to the Principles of Organic Agriculture, which determines whether a fertilizer can be used for commercial organic agriculture, not whether the fertilizer consists of organic compounds.

<span class="mw-page-title-main">Rhizosphere</span> Region of soil or substrate comprising the root microbiome

The rhizosphere is the narrow region of soil or substrate that is directly influenced by root secretions and associated soil microorganisms known as the root microbiome. Soil pores in the rhizosphere can contain many bacteria and other microorganisms that feed on sloughed-off plant cells, termed rhizodeposition, and the proteins and sugars released by roots, termed root exudates. This symbiosis leads to more complex interactions, influencing plant growth and competition for resources. Much of the nutrient cycling and disease suppression by antibiotics required by plants occurs immediately adjacent to roots due to root exudates and metabolic products of symbiotic and pathogenic communities of microorganisms. The rhizosphere also provides space to produce allelochemicals to control neighbours and relatives.

<i>Bradyrhizobium</i> Genus of bacteria

Bradyrhizobium is a genus of Gram-negative soil bacteria, many of which fix nitrogen. Nitrogen fixation is an important part of the nitrogen cycle. Plants cannot use atmospheric nitrogen (N2); they must use nitrogen compounds such as nitrates.

<span class="mw-page-title-main">Rhizobacteria</span> Group of bacteria affecting plant growth

Rhizobacteria are root-associated bacteria that can have a detrimental, neutral or beneficial effect on plant growth. The name comes from the Greek rhiza, meaning root. The term usually refers to bacteria that form symbiotic relationships with many plants (mutualism). Rhizobacteria are often referred to as plant growth-promoting rhizobacteria, or PGPRs. The term PGPRs was first used by Joseph W. Kloepper in the late 1970s and has become commonly used in scientific literature.

<span class="mw-page-title-main">Phototrophic biofilm</span> Microbial communities including microorganisms which use light as their energy source

Phototrophic biofilms are microbial communities generally comprising both phototrophic microorganisms, which use light as their energy source, and chemoheterotrophs. Thick laminated multilayered phototrophic biofilms are usually referred to as microbial mats or phototrophic mats. These organisms, which can be prokaryotic or eukaryotic organisms like bacteria, cyanobacteria, fungi, and microalgae, make up diverse microbial communities that are affixed in a mucous matrix, or film. These biofilms occur on contact surfaces in a range of terrestrial and aquatic environments. The formation of biofilms is a complex process and is dependent upon the availability of light as well as the relationships between the microorganisms. Biofilms serve a variety of roles in aquatic, terrestrial, and extreme environments; these roles include functions which are both beneficial and detrimental to the environment. In addition to these natural roles, phototrophic biofilms have also been adapted for applications such as crop production and protection, bioremediation, and wastewater treatment.

Microbial inoculants, also known as soil inoculants or bioinoculants, are agricultural amendments that use beneficial rhizosphericic or endophytic microbes to promote plant health. Many of the microbes involved form symbiotic relationships with the target crops where both parties benefit (mutualism). While microbial inoculants are applied to improve plant nutrition, they can also be used to promote plant growth by stimulating plant hormone production. Although bacterial and fungal inoculants are common, inoculation with archaea to promote plant growth is being increasingly studied.

<span class="mw-page-title-main">Agricultural pollution</span> Type of pollution caused by agriculture

Agricultural pollution refers to biotic and abiotic byproducts of farming practices that result in contamination or degradation of the environment and surrounding ecosystems, and/or cause injury to humans and their economic interests. The pollution may come from a variety of sources, ranging from point source water pollution to more diffuse, landscape-level causes, also known as non-point source pollution and air pollution. Once in the environment these pollutants can have both direct effects in surrounding ecosystems, i.e. killing local wildlife or contaminating drinking water, and downstream effects such as dead zones caused by agricultural runoff is concentrated in large water bodies.

Agricultural microbiology is a branch of microbiology dealing with plant-associated microbes and plant and animal diseases. It also deals with the microbiology of soil fertility, such as microbial degradation of organic matter and soil nutrient transformations. The primary goal of agricultural microbiology is to comprehensively explore the interactions between beneficial microorganisms like bacteria and fungi with crops. It also deals with the microbiology of soil fertility, such as microbial degradation of organic matter and soil nutrient transformations.

<span class="mw-page-title-main">Manure</span> Organic matter, mostly derived from animal feces, which can be used as fertilizer

Manure is organic matter that is used as organic fertilizer in agriculture. Most manure consists of animal feces; other sources include compost and green manure. Manures contribute to the fertility of soil by adding organic matter and nutrients, such as nitrogen, that are utilised by bacteria, fungi and other organisms in the soil. Higher organisms then feed on the fungi and bacteria in a chain of life that comprises the soil food web.

Soil microbiology is the study of microorganisms in soil, their functions, and how they affect soil properties. It is believed that between two and four billion years ago, the first ancient bacteria and microorganisms came about on Earth's oceans. These bacteria could fix nitrogen, in time multiplied, and as a result released oxygen into the atmosphere. This led to more advanced microorganisms, which are important because they affect soil structure and fertility. Soil microorganisms can be classified as bacteria, actinomycetes, fungi, algae and protozoa. Each of these groups has characteristics that define them and their functions in soil.

<i>Azotobacter chroococcum</i> Species of bacterium

Azotobacter chroococcum is a bacterium that has the ability to fix atmospheric nitrogen. It was discovered by Martinus Beijerinck in 1901, and was the first aerobic, free-living nitrogen fixer discovered. A. chroococcum could be useful for nitrogen fixation in crops as a biofertilizer, fungicide, and nutrient indicator, and in bioremediation.

Seaweed fertiliser is organic fertilizer made from seaweed that is used in agriculture to increase soil fertility and plant growth. The use of seaweed fertilizer dates back to antiquity and has a broad array of benefits for soils. Seaweed fertilizer can be applied in a number of different forms, including refined liquid extracts and dried, pulverized organic material. Through its composition of various bioactive molecules, seaweed functions as a strong soil conditioner, bio-remediator, and biological pest control, with each seaweed phylum offering various benefits to soil and crop health. These benefits can include increased tolerance to abiotic stressors, improved soil texture and water retention, and reduced occurrence of diseases.

References

  1. Vessey, J. Kevin (2003). "Plant growth promoting rhizobacteria as biofertilizers". Plant and Soil. 255 (2): 571–586. doi:10.1023/A:1026037216893. S2CID   37031212.
  2. "Microbe-containing Products Advertised to Enhance Crop Growth | Vegetable Production Systems Laboratory". u.osu.edu. Retrieved 2024-08-02.
  3. "Listing 17 bio-fertilizer microbes and their effects on the soil and plant health functions". Explogrow. 15 June 2016.
  4. "Archived copy" (PDF). Archived from the original (PDF) on 2011-07-18. Retrieved 2010-05-03.{{cite web}}: CS1 maint: archived copy as title (link)
  5. Soe, Khin Myat; Yamakawa, Takeo (2013-06-01). "Evaluation of effective Myanmar Bradyrhizobium strains isolated from Myanmar soybean and effects of coinoculation with Streptomyces griseoflavus P4 for nitrogen fixation". Soil Science and Plant Nutrition. 59 (3): 361–370. Bibcode:2013SSPN...59..361S. doi:10.1080/00380768.2013.794437. ISSN   0038-0768. S2CID   85207082.
  6. John RP, Tyagi RD, Brar SK, Surampalli RY, Prévost D (September 2011). "Bio-encapsulation of microbial cells for targeted agricultural delivery". Critical Reviews in Biotechnology. 31 (3): 211–226. doi:10.3109/07388551.2010.513327. PMID   20879835. S2CID   207467630.
  7. 1 2 3 Brambilla, Silvina; Stritzler, Margarita; Soto, Gabriela; Ayub, Nicolas (2022-12-01). "A synthesis of functional contributions of rhizobacteria to growth promotion in diverse crops". Rhizosphere. 24: 100611. Bibcode:2022Rhizo..2400611B. doi:10.1016/j.rhisph.2022.100611. ISSN   2452-2198.
  8. Aasfar, Abderrahim; Bargaz, Adnane; Yaakoubi, Kaoutar; Hilali, Abderraouf; Bennis, Iman; Zeroual, Youssef; Meftah Kadmiri, Issam (2021-02-25). "Nitrogen Fixing Azotobacter Species as Potential Soil Biological Enhancers for Crop Nutrition and Yield Stability". Frontiers in Microbiology. 12. doi: 10.3389/fmicb.2021.628379 . ISSN   1664-302X. PMC   7947814 . PMID   33717018.
  9. Ahmed, Sohail; Hassan, Babar; Farooq, Muhammad Umer (December 2018). "Effect of biofertilizers and diatomaceous earth on life and movement of subterranean termites under laboratory conditions". International Journal of Tropical Insect Science. 38 (4): 348–352. doi:10.1017/S1742758418000103. ISSN   1742-7584. S2CID   91596645.
  10. Klinsukon, Chaiya; Ekprasert, Jindarat; Boonlue, Sophon (December 2021). "Using arbuscular mycorrhizal fungi (Gigaspora margarita) as a growth promoter and biocontrol of leaf blight disease in eucalyptus seedlings caused by Cylindrocladium quinqueseptatum". Rhizosphere. 20: 100450. Bibcode:2021Rhizo..2000450K. doi:10.1016/j.rhisph.2021.100450. ISSN   2452-2198.
  11. 1 2 3 Wang, Xueling; Chi, Yongkuan; Song, Shuzhen (2024-03-25). "Important soil microbiota's effects on plants and soils: a comprehensive 30-year systematic literature review". Frontiers in Microbiology. 15. doi: 10.3389/fmicb.2024.1347745 . ISSN   1664-302X. PMC   10999704 . PMID   38591030.
  12. Song, Geun Cheol; Im, Hyunjoo; Jung, Jihye; Lee, Soohyun; Jung, Man-Young; Rhee, Sung-Keun; Ryu, Choong-Min (March 2019). "Plant growth-promoting archaea trigger induced systemic resistance in Arabidopsis thaliana against Pectobacterium carotovorum and Pseudomonas syringae". Environmental Microbiology. 21 (3): 940–948. Bibcode:2019EnvMi..21..940S. doi:10.1111/1462-2920.14486. ISSN   1462-2912. PMID   30461142.
  13. "JADAM Organic Farming". en.jadam.kr (in Korean). Retrieved 2024-08-02.
  14. Guo, Jia; Cheng, Yulin (January 2022). "Advances in Fungal Elicitor-Triggered Plant Immunity". International Journal of Molecular Sciences. 23 (19): 12003. doi: 10.3390/ijms231912003 . ISSN   1422-0067. PMC   9569958 . PMID   36233304.
  15. Li, Jun; Otero-Gonzalez, Lila; Lens, Piet N.L.; Ferrer, Ivet; Du Laing, Gijs (December 2022). "Assessment of selenium and zinc enriched sludge and duckweed as slow-release micronutrient biofertilizers for Phaseolus vulgaris growth". Journal of Environmental Management. 324: 116397. Bibcode:2022JEnvM.32416397L. doi:10.1016/j.jenvman.2022.116397. ISSN   0301-4797. PMID   36208519.
  16. Xu, Qiyu; Zhu, Tao; Zhao, Ruifeng; Zhao, Yang; Duan, Yangkai; Liu, Xiang; Luan, Guodong; Hu, Ruibo; Tang, Sanyuan; Ma, Xinrong; Liu, Yan; Li, Shengjun; Lu, Xuefeng (2023-12-05). "Arthrospira promotes plant growth and soil properties under high salinity environments". Frontiers in Plant Science. 14. doi: 10.3389/fpls.2023.1293958 . ISSN   1664-462X. PMC   10728656 . PMID   38116155.
  17. Zakry, Fitri Abdul Aziz; Shamsuddin, Zulkifli H.; Abdul Rahim, Khairuddin; Zawawi Zakaria, Zin; Abdul Rahim, Anuar (2012). "Inoculation of Bacillus sphaericus UPMB-10 to Young Oil Palm and Measurement of Its Uptake of Fixed Nitrogen Using the 15N Isotope Dilution Technique". Microbes and Environments. 27 (3): 257–262. doi:10.1264/jsme2.ME11309. PMC   4036051 . PMID   22446306.
  18. Riaz, Umair; Murtaza, Ghulam; Anum, Wajiha; Samreen, Tayyaba; Sarfraz, Muhammad; Nazir, Muhammad Zulqernain (2021), Hakeem, Khalid Rehman; Dar, Gowhar Hamid; Mehmood, Mohammad Aneesul; Bhat, Rouf Ahmad (eds.), "Plant Growth-Promoting Rhizobacteria (PGPR) as Biofertilizers and Biopesticides", Microbiota and Biofertilizers: A Sustainable Continuum for Plant and Soil Health, Cham: Springer International Publishing, pp. 181–196, doi:10.1007/978-3-030-48771-3_11, ISBN   978-3-030-48771-3 , retrieved 2024-08-02
  19. Orozco-Mosqueda, Ma. del Carmen; Glick, Bernard R.; Santoyo, Gustavo (2020-05-01). "ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt stress in crops". Microbiological Research. 235: 126439. doi:10.1016/j.micres.2020.126439. ISSN   0944-5013. PMID   32097862.
  20. 1 2 Daniel, Augustine Innalegwu; Fadaka, Adewale Oluwaseun; Gokul, Arun; Bakare, Olalekan Olanrewaju; Aina, Omolola; Fisher, Stacey; Burt, Adam Frank; Mavumengwana, Vuyo; Keyster, Marshall; Klein, Ashwil (June 2022). "Biofertilizer: The Future of Food Security and Food Safety". Microorganisms. 10 (6): 1220. doi: 10.3390/microorganisms10061220 . ISSN   2076-2607. PMC   9227430 . PMID   35744738.
  21. Mącik, Mateusz; Gryta, Agata; Frąc, Magdalena (2020), Biofertilizers in agriculture: An overview on concepts, strategies and effects on soil microorganisms, Advances in Agronomy, vol. 162, Elsevier, pp. 31–87, doi:10.1016/bs.agron.2020.02.001, ISBN   978-0-12-820767-3 , retrieved 2024-08-02
  22. Punia, Abhay; Dehal, Lipsa; Chauhan, Nalini Singh (2023), Ogwu, Matthew Chidozie; Chibueze Izah, Sylvester (eds.), "Evidence of the Toxic Potentials of Agrochemicals on Human Health and Biodiversity", One Health Implications of Agrochemicals and their Sustainable Alternatives, Singapore: Springer Nature, pp. 105–135, doi:10.1007/978-981-99-3439-3_4, ISBN   978-981-99-3439-3 , retrieved 2024-08-02
  23. 1 2 Schütz, Lukas; Gattinger, Andreas; Meier, Matthias; Müller, Adrian; Boller, Thomas; Mäder, Paul; Mathimaran, Natarajan (2018-01-12). "Improving Crop Yield and Nutrient Use Efficiency via Biofertilization—A Global Meta-analysis". Frontiers in Plant Science. 8: 2204. doi: 10.3389/fpls.2017.02204 . ISSN   1664-462X. PMC   5770357 . PMID   29375594.
  24. Htwe, Aung Zaw; Moh, Seinn Moh; Soe, Khin Myat; Moe, Kyi; Yamakawa, Takeo (February 2019). "Effects of Biofertilizer Produced from Bradyrhizobium and Streptomyces griseoflavus on Plant Growth, Nodulation, Nitrogen Fixation, Nutrient Uptake, and Seed Yield of Mung Bean, Cowpea, and Soybean". Agronomy. 9 (2): 77. doi: 10.3390/agronomy9020077 .
  25. Brookshire, E. N. J.; Wurzburger, Nina; Currey, Bryce; Menge, Duncan N. L.; Oatham, Michael P.; Roberts, Carlton (20 May 2019). "Symbiotic N fixation is sufficient to support net aboveground biomass accumulation in a humid tropical forest". Scientific Reports. 9 (1): 7571. Bibcode:2019NatSR...9.7571B. doi:10.1038/s41598-019-43962-5. PMC   6527854 . PMID   31110241.