Bacillus licheniformis

Last updated

Bacillus licheniformis
Bacillus licheniformis.jpg
Bacillus licheniformis colonies on a blood agar plate.
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Bacillota
Class: Bacilli
Order: Bacillales
Family: Bacillaceae
Genus: Bacillus
Species:
B. licheniformis
Binomial name
Bacillus licheniformis
(Weigmann 1898) Chester 1901 [1]

Bacillus licheniformis is a bacterium commonly found in the soil. It is found on bird feathers, especially chest and back plumage, and most often in ground-dwelling birds (like sparrows) and aquatic species (like ducks).

Contents

It is a gram-positive, mesophilic bacterium. Its optimal growth temperature is around 50 °C, though it can survive at much higher temperatures. The optimal temperature for enzyme secretion is 37 °C. It can exist in a dormant spore form to resist harsh environments, or in a vegetative state when conditions are good.

High capacity of secretion of the alkaline serine protease has made B.licheniformis one of the most important bacteria in industrial enzyme production. [2] Subtilisin Carlsberg ( P00780 ) secreted by B. licheniformis is used as a detergent protease. It is sold under the name Alcalase by Novozymes. [3] A small antisense RNA against Subtilisin Carlsberg named BLi_r0872 was discovered in an RNA-seq based study. It may have a putative impact on protease production and serve as target for strain improvement. [4]

Scientists are currently exploring its ability to degrade feathers for agricultural purposes. Feathers contain high amounts of non-digestible proteins, but researchers hope that, through fermentation with B. licheniformis, they can use waste feathers to produce cheap and nutritious feather meal to feed livestock.

Ecological research is also being done looking at the interaction between plumage colors and B. licheniformis activity, and the consequences thereof. Feather degrading bacteria may have played an important role in the evolution of molting, and patterns in feather coloration (Gloger's Rule).

Description

B. licheniformis is a Gram positive, spore-forming, facultative anaerobic, rod-shaped bacterium. [5] [6] It was initially named Clostridium licheniforme by H. Weigmann [7] and renamed Bacillus licheniformis by Frederick D. Chester. [8] B. licheniformis displays a variety of colony morphologies, with the rough "licheniform" colonies giving the organism its name. [6] Colonies tend to be cream-colored, but will turn red in the presence of iron in media, most likely as a result of pulcherrimin. [6] [9] B. licheniformis is found in a wide variety of environments, but especially in soil and in the feathers of birds, where B. licheniformis degrades β-keratin. [6] [10] There is evidence that red feathers, with psittacofulvin, are more resistant to degradation. [11]

Applications

Industrial enzymes

Subtilisin Carlsberg, a serine protease secreted by B. licheniformis, is used in laundry detergent formulations due to its ability to perform at high pH levels (optimal activity is between 8.0 and 10.0) and high temperatures (40–50 °C or 104–122 °F). [12] Amylases are also synthesized by B. licheniformis and used for industrial purposes. [13] [14]

Probiotics

B. licheniformis is used as a probiotic in animal feed, where isolates have been shown to prevent disease and promote growth as well as being commercially available. [13] [15] [16] Some isolates have also been found to be probiotic in humans (and are also commercially available), [13] [17] but it's been mentioned that clinical trials have not been performed on many of them yet. [13]

Other applications

B. licheniformis also shows possible applications in bioremediation, biomineralization, and biofuels. [13]

Natural genetic transformation

B. licheniformis is naturally competent for genetic transformation. [18] Natural genetic transformation is a sexual process involving DNA transfer from one bacterium to another through the intervening medium, and the integration of the donor sequence into the recipient genome by homologous recombination.

Pathogenicity and food spoilage

Bacillus licheniformis has been found to cause infection in several cases of immunocompromised patients. [19] [20] B. licheniformis has been found to be the causative agent of ventriculitis, ophthalmitis, bacteremia, peritonitis, and endocarditis. [21] [22] [23] [24] B. licheniformis is also known to contaminate food, especially dairy, [25] as well as causing "ropiness" in bread. [20] [26] There is evidence that contamination may be a result of a toxin. [20]

Identification

Below is a list of differential techniques and results that can help to identify Bacillus licheniformis from other bacteria and Bacillus species. [27]

Related Research Articles

<i>Bacillus</i> Genus of bacteria

Bacillus is a genus of Gram-positive, rod-shaped bacteria, a member of the phylum Bacillota, with 266 named species. The term is also used to describe the shape (rod) of other so-shaped bacteria; and the plural Bacilli is the name of the class of bacteria to which this genus belongs. Bacillus species can be either obligate aerobes which are dependent on oxygen, or facultative anaerobes which can survive in the absence of oxygen. Cultured Bacillus species test positive for the enzyme catalase if oxygen has been used or is present.

<i>Bacillus cereus</i> Species of bacterium

Bacillus cereus is a Gram-positive rod-shaped bacterium commonly found in soil, food, and marine sponges. The specific name, cereus, meaning "waxy" in Latin, refers to the appearance of colonies grown on blood agar. Some strains are harmful to humans and cause foodborne illness due to their spore-forming nature, while other strains can be beneficial as probiotics for animals, and even exhibit mutualism with certain plants. B. cereus bacteria may be anaerobes or facultative anaerobes, and like other members of the genus Bacillus, can produce protective endospores. They have a wide range of virulence factors, including phospholipase C, cereulide, sphingomyelinase, metalloproteases, and cytotoxin K, many of which are regulated via quorum sensing. B. cereus strains exhibit flagellar motility.

<span class="mw-page-title-main">Transformation (genetics)</span> Genetic alteration of a cell by uptake of genetic material from the environment

In molecular biology and genetics, transformation is the genetic alteration of a cell resulting from the direct uptake and incorporation of exogenous genetic material from its surroundings through the cell membrane(s). For transformation to take place, the recipient bacterium must be in a state of competence, which might occur in nature as a time-limited response to environmental conditions such as starvation and cell density, and may also be induced in a laboratory.

<i>Bacillus subtilis</i> Catalase-positive bacterium

Bacillus subtilis, known also as the hay bacillus or grass bacillus, is a Gram-positive, catalase-positive bacterium, found in soil and the gastrointestinal tract of ruminants, humans and marine sponges. As a member of the genus Bacillus, B. subtilis is rod-shaped, and can form a tough, protective endospore, allowing it to tolerate extreme environmental conditions. B. subtilis has historically been classified as an obligate aerobe, though evidence exists that it is a facultative anaerobe. B. subtilis is considered the best studied Gram-positive bacterium and a model organism to study bacterial chromosome replication and cell differentiation. It is one of the bacterial champions in secreted enzyme production and used on an industrial scale by biotechnology companies.

Lactiplantibacillus plantarum is a widespread member of the genus Lactiplantibacillus and commonly found in many fermented food products as well as anaerobic plant matter. L. plantarum was first isolated from saliva. Based on its ability to temporarily persist in plants, the insect intestine and in the intestinal tract of vertebrate animals, it was designated as a nomadic organism. L. plantarum is Gram positive, bacilli shaped bacterium. L. plantarum cells are rods with rounded ends, straight, generally 0.9–1.2 μm wide and 3–8 μm long, occurring singly, in pairs or in short chains. L. plantarum has one of the largest genomes known among the lactic acid bacteria and is a very flexible and versatile species. It is estimated to grow between pH 3.4 and 8.8. Lactiplantibacillus plantarum can grow in the temperature range 12 °C to 40 °C. The viable counts of the "L. plantarum" stored at refrigerated condition (4 °C) remained high, while a considerable reduction in the counts was observed stored at room temperature.

<i>Bacillus coagulans</i> Species of bacterium

Bacillus coagulans is a lactic acid–forming bacterial species first isolated and described in 1915 by B.W. Hammer at the Iowa Agricultural Experiment Station as a cause of an outbreak of coagulation in evaporated milk packed by an Iowa condensary. Separately isolated in 1935 and described as Lactobacillus sporogenes in the fifth edition of Bergey's Manual of Systematic Bacteriology, it exhibits characteristics typical of both genera Lactobacillus and Bacillus; its taxonomic position between the families Lactobacillaceae and Bacillaceae was often debated. However, in the seventh edition of Bergey's, it was finally transferred to the genus Bacillus. DNA-based technology was used in distinguishing between the two genera of bacteria, which are morphologically similar and possess similar physiological and biochemical characteristics.

<i>Lacticaseibacillus casei</i> Species of bacterium

Lacticaseibacillus casei is an organism that belongs to the largest genus in the family Lactobacillaceae, a lactic acid bacteria (LAB), that was previously classified as Lactobacillus casei. This bacteria has been identified as facultatively anaerobic or microaerophilic, acid-tolerant, non-spore-forming bacteria.

<i>Bacillus amyloliquefaciens</i> Species of bacterium

Bacillus amyloliquefaciens is a species of bacterium in the genus Bacillus that is the source of the BamHI restriction enzyme. It also synthesizes a natural antibiotic protein barnase, a widely studied ribonuclease that forms a famously tight complex with its intracellular inhibitor barstar, and plantazolicin, an antibiotic with selective activity against Bacillus anthracis.

<i>Bacillus megaterium</i> Species of bacterium

Bacillus megaterium is a rod-like, Gram-positive, mainly aerobic, spore forming bacterium found in widely diverse habitats. It has a cell length up to 4 µm and a diameter of 1.5 µm, which is quite large for bacteria. The cells often occur in pairs and chains, where the cells are joined by polysaccharides on the cell walls.

<span class="mw-page-title-main">Subtilisin</span> Proteolytic enzyme found in Bacillus subtilis

Subtilisin is a protease initially obtained from Bacillus subtilis.

<i>Streptococcus thermophilus</i> Species of bacterium

Streptococcus thermophilus formerly known as Streptococcus salivarius subsp. thermophilus is a gram-positive bacterium, and a fermentative facultative anaerobe, of the viridans group. It tests negative for cytochrome, oxidase, and catalase, and positive for alpha-hemolytic activity. It is non-motile and does not form endospores. S. thermophilus is fimbriated.

Levilactobacillus brevis is a gram-positive, rod shaped species of lactic acid bacteria which is heterofermentative, creating CO2, lactic acid and acetic acid or ethanol during fermentation. L. brevis is the type species of the genus Levilactobacillus (previously L. brevis group), which comprises 24 species. It can be found in many different environments, such as fermented foods, and as normal microbiota. L. brevis is found in food such as sauerkraut and pickles. It is also one of the most common causes of beer spoilage. Ingestion has been shown to improve human immune function, and it has been patented several times. Normal gut microbiota L. brevis is found in human intestines, vagina, and feces.

Lysinibacillus sphaericus is a Gram-positive, mesophilic, rod-shaped bacterium commonly found on soil. It can form resistant endospores that are tolerant to high temperatures, chemicals and ultraviolet light and can remain viable for long periods of time. It is of particular interest to the World Health Organization due to the larvicide effect of some strains against two mosquito genera, more effective than Bacillus thuringiensis, frequently used as a biological pest control. L. sphaericus cells in a vegetative state are also effective against Aedes aegypti larvae, an important vector of yellow fever and dengue viruses.

Propionibacterium freudenreichii is a gram-positive, non-motile bacterium that plays an important role in the creation of Emmental cheese, and to some extent, Jarlsberg cheese, Leerdammer and Maasdam cheese. Its concentration in Swiss-type cheeses is higher than in any other cheese. Propionibacteria are commonly found in milk and dairy products, though they have also been extracted from soil. P. freudenreichii has a circular chromosome about 2.5 Mb long. When Emmental cheese is being produced, P. freudenreichii ferments lactate to form acetate, propionate, and carbon dioxide (3 C3H6O3 → 2 C2H5CO2 + C2H3O2 + CO2).

Keratinases are proteolytic enzymes that digest keratin.

Rhodovulum sulfidophilum is a gram-negative purple nonsulfur bacteria. The cells are rod-shaped, and range in size from 0.6 to 0.9 μm wide and 0.9 to 2.0 μm long, and have a polar flagella. These cells reproduce asexually by binary fission. This bacterium can grow anaerobically when light is present, or aerobically (chemoheterotrophic) under dark conditions. It contains the photosynthetic pigments bacteriochlorophyll a and of carotenoids.

<i>Lacticaseibacillus paracasei</i> Species of bacterium

Lacticaseibacillus paracasei (commonly abbreviated as Lc. paracasei) is a gram-positive, homofermentative species of lactic acid bacteria that are commonly used in dairy product fermentation and as probiotic cultures. Lc. paracasei is a bacterium that operates by commensalism. It is commonly found in many human habitats such as human intestinal tracts and mouths as well as sewages, silages, and previously mentioned dairy products. The name includes morphology, a rod-shaped bacterium with a width of 2.0 to 4.0μm and length of 0.8 to 1.0μm.

Symbiobacterium thermophilum is a symbiotic thermophile that depends on co-culture with a Bacillus strain for growth. It is Gram-negative and tryptophanase-positive, with type strain T(T). It is the type species of its genus. Symbiobacterium is related to the Gram-positive Bacillota and Actinomycetota, but belongs to a lineage that is distinct from both.S. thermophilum has a bacillus shaped cell structure with no flagella. This bacterium is located throughout the environment in soils and fertilizers.

Glutamyl endopeptidase I is a family of extracellular bacterial serine proteases. The proteases within this family have been identified in species of Staphylococcus, Bacillus, and Streptomyces, among others. The two former are more closely related, while the Streptomyces-type is treated as a separate family, glutamyl endopeptidase II.

Alkalihalobacillus is a genus of gram-positive or gram-variable rod-shaped bacteria in the family Bacillaceae from the order Bacillales. The type species of this genus is Alkalihalobacillus alcalophilus.

References

  1. "Species: Bacillus licheniformis". List of Prokaryotic names with Standing in Nomenclature . Retrieved 3 October 2020.
  2. Schallmey, Marcus; Singh, Ajay; Ward, Owen P. (2004-01-01). "Developments in the use of Bacillus species for industrial production". Canadian Journal of Microbiology. 50 (1): 1–17. doi:10.1139/w03-076. ISSN   0008-4166. PMID   15052317.
  3. "UniProtKB".
  4. Wiegand, Sandra; Dietrich, Sascha; Hertel, Robert; Bongaerts, Johannes; Evers, Stefan; Volland, Sonja; Daniel, Rolf; Liesegang, Heiko (2013-01-01). "RNA-Seq of Bacillus licheniformis: active regulatory RNA features expressed within a productive fermentation". BMC Genomics. 14: 667. doi: 10.1186/1471-2164-14-667 . ISSN   1471-2164. PMC   3871023 . PMID   24079885.
  5. Clements, Laura D.; Miller, Brian S.; Streips, Uldis N. (August 2002). "Comparative growth analysis of the facultative anaerobes Bacillus subtilis, Bacillus licheniformis, and Escherichia coli". Systematic and Applied Microbiology. 25 (2): 284–286. doi:10.1078/0723-2020-00108. ISSN   0723-2020. PMID   12353884.
  6. 1 2 3 4 Logan, Niall A.; Vos, Paul De (2015), "Bacillus", Bergey's Manual of Systematics of Archaea and Bacteria, American Cancer Society, pp. 1–163, doi:10.1002/9781118960608.gbm00530, ISBN   978-1-118-96060-8 , retrieved 2021-02-06
  7. Weigmann, H. (1898). Über zwei an der Käsereifung beteiligte Bakterien. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Abteilung. pp. 820–834.
  8. Chester, Frederick D. (1901). A Manual of Determinative Bacteriology. New York: The MacMillan Company.
  9. Li, Xiaoyun; Wang, Dong; Cai, Dongbo; Zhan, Yangyang; Wang, Qin; Chen, Shouwen (2017-12-01). Identification and High-level Production of Pulcherrimin in Bacillus licheniformis DW2. Applied Biochemistry and Biotechnology. Vol. 183. pp. 1323–1335. doi:10.1007/s12010-017-2500-x. ISSN   1559-0291. PMID   28523413. S2CID   9678745.
  10. Whitaker, Justine M.; Cristol, Daniel A.; Forsyth, Mark H. (July 2005). "Prevalence and genetic diversity of Bacillus licheniformis in avian plumage". Journal of Field Ornithology. 76 (3): 264–270. doi:10.1648/0273-8570-76.3.264. ISSN   0273-8570. S2CID   34090767.
  11. Burtt, E. H. (2010). "Colourful parrot feathers resist bacterial degradation". Biology Letters. 7 (2): 214–216. doi:10.1098/rsbl.2010.0716. PMC   3061162 . PMID   20926430.
  12. Sellami-Kamoun, Alya; Haddar, Anissa; Ali, Nedra El-Hadj; Ghorbel-Frikha, Basma; Kanoun, Safia; Nasri, Moncef (2008-05-01). "Stability of thermostable alkaline protease from Bacillus licheniformis RP1 in commercial solid laundry detergent formulations". Microbiological Research. 163 (3): 299–306. doi:10.1016/j.micres.2006.06.001. ISSN   0944-5013. PMID   16872818.
  13. 1 2 3 4 5 Muras, Andrea; Romero, Manuel; Mayer, Celia; Otero, Ana (2021-02-16). "Biotechnological applications of Bacillus licheniformis". Critical Reviews in Biotechnology. 41 (4): 609–627. doi:10.1080/07388551.2021.1873239. ISSN   0738-8551. PMID   33593221. S2CID   231945315.
  14. de Boer, Anne Sietske; Priest, Fergus; Diderichsen, Børge (1994-01-01). "On the industrial use of Bacillus licheniformis: a review". Applied Microbiology and Biotechnology. 40 (5): 595–598. doi:10.1007/BF00173313. ISSN   1432-0614. S2CID   9649394.
  15. Liu, Xiaolu; Yan, Hai; Lv, Le; Xu, Qianqian; Yin, Chunhua; Zhang, Keyi; Wang, Pei; Hu, Jiye (May 2012). "Growth Performance and Meat Quality of Broiler Chickens Supplemented with Bacillus licheniformis in Drinking Water". Asian-Australasian Journal of Animal Sciences. 25 (5): 682–689. doi:10.5713/ajas.2011.11334. ISSN   1011-2367. PMC   4093119 . PMID   25049614.
  16. Deng, W.; Dong, X. F.; Tong, J. M.; Zhang, Q. (March 2012). "The probiotic Bacillus licheniformis ameliorates heat stress-induced impairment of egg production, gut morphology, and intestinal mucosal immunity in laying hens". Poultry Science. 91 (3): 575–582. doi: 10.3382/ps.2010-01293 . ISSN   0032-5791. PMID   22334732.
  17. Lee, Na-Kyoung; Kim, Won-Suck; Paik, Hyun-Dong (2019-10-08). "Bacillus strains as human probiotics: characterization, safety, microbiome, and probiotic carrier". Food Science and Biotechnology. 28 (5): 1297–1305. doi:10.1007/s10068-019-00691-9. ISSN   1226-7708. PMC   6811671 . PMID   31695928.
  18. Jakobs M, Hoffmann K, Grabke A, Neuber S, Liesegang H, Volland S, Meinhardt F (2014). "Unravelling the genetic basis for competence development of auxotrophic Bacillus licheniformis 9945A strains". Microbiology. 160 (Pt 10): 2136–47. doi: 10.1099/mic.0.079236-0 . PMID   25009236.
  19. La Jeon, You; Yang, John Jeongseok; Kim, Min Jin; Lim, Gayoung; Cho, Sun Young; Park, Tae Sung; Suh, Jin-Tae; Park, Yong Ho; Lee, Mi Suk; Kim, Soo Cheol; Lee, Hee Joo (2012). "Combined Bacillus licheniformis and Bacillus subtilis infection in a patient with oesophageal perforation". Journal of Medical Microbiology. 61 (12): 1766–1769. doi:10.1099/jmm.0.042275-0. ISSN   0022-2615. PMID   22918867.
  20. 1 2 3 Salkinoja-Salonen, M. S.; Vuorio, R.; Andersson, M. A.; Kämpfer, P.; Andersson, M. C.; Honkanen-Buzalski, T.; Scoging, A. C. (October 1999). "Toxigenic Strains of Bacillus licheniformis Related to Food Poisoning". Applied and Environmental Microbiology. 65 (10): 4637–4645. Bibcode:1999ApEnM..65.4637S. doi:10.1128/AEM.65.10.4637-4645.1999. ISSN   0099-2240. PMC   91618 . PMID   10508100.
  21. Young, Ronald F.; Yoshimori, Robert N.; Murray, Dennis L.; Chou, Paula J. (1982-10-01). "Postoperative neurosurgical infections due to bacillus species". Surgical Neurology. 18 (4): 271–273. doi:10.1016/0090-3019(82)90343-3. ISSN   0090-3019. PMID   6758158.
  22. Maucour, M. F.; Brugniart, C.; Ducasse, A.; Brasme, L.; Bajolet, O. (April 1999). "[Bacillary endophthalmitis. Four case reports]". Journal Français d'Ophtalmologie. 22 (3): 371–376. ISSN   0181-5512. PMID   10337596.
  23. Haydushka, Irina A.; Markova, Nadya; Kirina, Vesselina; Atanassova, Maria (2012-01-01). "Recurrent sepsis due to Bacillus licheniformis". Journal of Global Infectious Diseases. 4 (1): 82–3. doi: 10.4103/0974-777X.93768 . ISSN   0974-777X. PMC   3326966 . PMID   22529634.
  24. Blue, S. R.; Singh, V. R.; Saubolle, M. A. (1995-03-01). "Bacillus licheniformis Bacteremia: Five Cases Associated with Indwelling Central Venous Catheters". Clinical Infectious Diseases. 20 (3): 629–633. doi:10.1093/clinids/20.3.629. ISSN   1058-4838. PMID   7756487.
  25. Dhakal, Rajat; Chauhan, Kanika; Seale, R. Brent; Deeth, Hilton C.; Pillidge, Christopher J.; Powell, Ian B.; Craven, Heather; Turner, Mark S. (2013-06-01). "Genotyping of dairy Bacillus licheniformis isolates by high resolution melt analysis of multiple variable number tandem repeat loci". Food Microbiology. 34 (2): 344–351. doi:10.1016/j.fm.2013.01.006. ISSN   0740-0020. PMID   23541201.
  26. Sorokulova, I. B.; Reva, O. N.; Smirnov, V. V.; Pinchuk, I. V.; Lapa, S. V.; Urdaci, M. C. (2003). "Genetic diversity and involvement in bread spoilage of Bacillus strains isolated from flour and ropy bread". Letters in Applied Microbiology. 37 (2): 169–173. doi: 10.1046/j.1472-765X.2003.01372.x . ISSN   1472-765X. PMID   12859662. S2CID   34135869.
  27. Harwood, Colin R. (2013-11-11). Bacillus. Springer Science & Business Media. ISBN   9781489935021.