Microbial inoculant

Last updated

Microbial inoculants, also known as soil inoculants or bioinoculants, are agricultural amendments that use beneficial rhizosphericic or endophytic microbes to promote plant health. Many of the microbes involved form symbiotic relationships with the target crops where both parties benefit (mutualism). While microbial inoculants are applied to improve plant nutrition, they can also be used to promote plant growth by stimulating plant hormone production. [1] [2] Although bacterial and fungal inoculants are common, inoculation with archaea to promote plant growth is being increasingly studied. [3]

Contents

Research into the benefits of inoculants in agriculture extends beyond their capacity as biofertilizers. Microbial inoculants can induce systemic acquired resistance (SAR) of crop species to several common crop diseases (provides resistance against pathogens). So far SAR has been demonstrated for powdery mildew (Blumeria graminis f. sp. hordei, Heitefuss, 2001), take-all (Gaeumannomyces graminis var. tritici, Khaosaad et al., 2007), leaf spot ( Pseudomonas syringae , Ramos Solano et al., 2008) and root rot ( Fusarium culmorum , Waller et al. 2005).

However, it is increasingly recognized that microbial inoculants often modify the soil microbial community (Mawarda et al., 2020).

Bacterial

Rhizobacterial inoculants

The rhizobacteria commonly applied as inoculants include nitrogen-fixers, phosphate-solubilisers and other root-associated beneficial bacteria which enhance the availability of the macronutrients nitrogen and phosphorus to the host plant. Such bacteria are commonly referred to as plant growth promoting rhizobacteria (PGPR).

Nitrogen-fixing bacteria

The most commonly applied rhizobacteria are Rhizobium and closely related genera. Rhizobium are nitrogen-fixing bacteria that form symbiotic associations within nodules on the roots of legumes. This increases host nitrogen nutrition and is important to the cultivation of soybeans, chickpeas and many other leguminous crops. For non-leguminous crops, Azospirillum has been demonstrated to be beneficial in some cases for nitrogen fixation and plant nutrition. [1]

For cereal crops, diazotrophic rhizobacteria have increased plant growth, [4] grain yield (Caballero-Mellado et al., 1992), nitrogen and phosphorus uptake, [4] and nitrogen (Caballero-Mellado et al., 1992), phosphorus (Caballero-Mellado et al., 1992; Belimov et al., 1995) and potassium content (Caballero-Mellado et al., 1992). Rhizobacteria live in root nodes, and are associated with legumes.

Phosphate-solubilising bacteria

To improve phosphorus nutrition, the use of phosphate-solubilising bacteria (PSB) such as Agrobacterium radiobacter has also received attention (Belimov et al., 1995a; 1995b; Singh & Kapoor, 1999). As the name suggests, PSB are free-living bacteria that break down inorganic soil phosphates to simpler forms that enable uptake by plants.

Fungal inoculants

Symbiotic relationships between fungi and plant roots is referred to as a Mycorrhiza association. [5] This symbiotic relationships is present in nearly all land plants and give both the plant and fungi advantages to survival. [5] The plant can give upwards of 5-30% of its energy production to the fungi in exchange for increasing the root absorptive area with hyphae which gives the plant access to nutrients it would otherwise not be able to attain. [5] [6] The two most common mycorrhizae are arbuscular mycorrhizae and ectomycorrhizae. Ectomycorrhizae associations are most commonly found in woody-species, and have less implications for agricultural systems. [7]  

Arbuscular mycorrhiza

This diagram shows the beneficial symbiotic relationship between a plants roots and a fungus partner, which is referred to as a mycorrhiza association. Plants can give upwards of 5-30% of their photosynthetic production to this relationship, represented by G, in exchange for enhanced nutrient uptake, via hyphae, which extend the plants root absorptive area, giving it access to nutrients it would otherwise not be able to attain, which is represented by N and P. Mycorrhiza (3).svg
This diagram shows the beneficial symbiotic relationship between a plants roots and a fungus partner, which is referred to as a mycorrhiza association. Plants can give upwards of 5-30% of their photosynthetic production to this relationship, represented by G, in exchange for enhanced nutrient uptake, via hyphae, which extend the plants root absorptive area, giving it access to nutrients it would otherwise not be able to attain, which is represented by N and P.

Arbuscular mycorrhiza (AM) has received attention as a potential agriculture amendment for its ability to access and provide the host plant phosphorus. [7] Under a reduced fertilization greenhouse system that was inoculated with a mixture of AM fungi and rhizobacteria, tomato yields that were given from 100% fertility were attained at 70% fertility. [8] This 30% reduction in fertilizer application can aid in the reduction of nutrient pollution, and help prolong finite mineral resources such as phosphorus (Peak phosphorus). Other effects include increases in salinity tolerance, [9] drought tolerance, [10] and resistance to trace metal toxicity. [11]

Fungal partners

Fungal inoculation alone can benefit host plants. Inoculation paired with other amendments can further improve conditions. Arbuscular mycorrhizal inoculation combined with compost is a common household amendment for personal gardens, agriculture, and nurseries. It has been observed that this pairing can also promote microbial functions in soils that have been affected by mining. [12]

Certain fungal partners do best in specific ecotones or with certain crops. Arbuscular mycorrhizal inoculation paired with plant growth promoting bacteria resulted in a higher yield and quicker maturation in upland rice paddys. [13]

Maize growth improved after an amendment of arbuscular mycorrhizae and biochar. This amendment can also decrease cadmium uptake by crops. [14]

Inoculant usage

Fungal inoculants can be used with or without additional amendments in private gardens, homesteads, agricultural production, native nurseries, and land restoration projects.

Composite inoculants

The combination of strains of Plant Growth Promoting Rhizobacteria (PGPR) has been shown to benefit rice and barley. [15] [16] The main benefit from dual inoculation is increased plant nutrient uptake from both soil and fertilizer. [15] Multiple strains of inoculant have also been demonstrated to increase total nitrogenase activity compared to single strains of inoculants, even when only one strain is diazotrophic. [15] [17] [18]

PGPR and arbuscular mycorrhizae in combination can be useful in increasing wheat growth in nutrient poor soil [19] and improving nitrogen-extraction from fertilised soils. [20]

See also

Related Research Articles

<span class="mw-page-title-main">Mycorrhiza</span> Fungus-plant symbiotic association

A mycorrhiza is a symbiotic association between a fungus and a plant. The term mycorrhiza refers to the role of the fungus in the plant's rhizosphere, its root system. Mycorrhizae play important roles in plant nutrition, soil biology, and soil chemistry.

<span class="mw-page-title-main">Rhizobia</span> Nitrogen fixing soil bacteria

Rhizobia are diazotrophic bacteria that fix nitrogen after becoming established inside the root nodules of legumes (Fabaceae). To express genes for nitrogen fixation, rhizobia require a plant host; they cannot independently fix nitrogen. In general, they are gram negative, motile, non-sporulating rods.

<span class="mw-page-title-main">Endophyte</span> Endosymbiotic bacterium or fungus

An endophyte is an endosymbiont, often a bacterium or fungus, that lives within a plant for at least part of its life cycle without causing apparent disease. Endophytes are ubiquitous and have been found in all species of plants studied to date; however, most of the endophyte/plant relationships are not well understood. Some endophytes may enhance host growth and nutrient acquisition and improve the plant's ability to tolerate abiotic stresses, such as drought, and decrease biotic stresses by enhancing plant resistance to insects, pathogens and herbivores. Although endophytic bacteria and fungi are frequently studied, endophytic archaea are increasingly being considered for their role in plant growth promotion as part of the core microbiome of a plant.

<span class="mw-page-title-main">Arbuscular mycorrhiza</span> Symbiotic penetrative association between a fungus and the roots of a vascular plant

An arbuscular mycorrhiza (AM) is a type of mycorrhiza in which the symbiont fungus penetrates the cortical cells of the roots of a vascular plant forming arbuscules. Arbuscular mycorrhiza is a type of endomycorrhiza along with ericoid mycorrhiza and orchid mycorrhiza .They are characterized by the formation of unique tree-like structures, the arbuscules. In addition, globular storage structures called vesicles are often encountered.

<span class="mw-page-title-main">Rhizosphere</span> Region of soil or substrate comprising the root microbiome

The rhizosphere is the narrow region of soil or substrate that is directly influenced by root secretions and associated soil microorganisms known as the root microbiome. Soil pores in the rhizosphere can contain many bacteria and other microorganisms that feed on sloughed-off plant cells, termed rhizodeposition, and the proteins and sugars released by roots, termed root exudates. This symbiosis leads to more complex interactions, influencing plant growth and competition for resources. Much of the nutrient cycling and disease suppression by antibiotics required by plants occurs immediately adjacent to roots due to root exudates and metabolic products of symbiotic and pathogenic communities of microorganisms. The rhizosphere also provides space to produce allelochemicals to control neighbours and relatives.

<span class="mw-page-title-main">Soil biology</span> Study of living things in soil

Soil biology is the study of microbial and faunal activity and ecology in soil. Soil life, soil biota, soil fauna, or edaphon is a collective term that encompasses all organisms that spend a significant portion of their life cycle within a soil profile, or at the soil-litter interface. These organisms include earthworms, nematodes, protozoa, fungi, bacteria, different arthropods, as well as some reptiles, and species of burrowing mammals like gophers, moles and prairie dogs. Soil biology plays a vital role in determining many soil characteristics. The decomposition of organic matter by soil organisms has an immense influence on soil fertility, plant growth, soil structure, and carbon storage. As a relatively new science, much remains unknown about soil biology and its effect on soil ecosystems.

<span class="mw-page-title-main">Ericoid mycorrhiza</span> Species of fungus

The ericoid mycorrhiza is a mutualistic relationship formed between members of the plant family Ericaceae and several lineages of mycorrhizal fungi. This symbiosis represents an important adaptation to acidic and nutrient poor soils that species in the Ericaceae typically inhabit, including boreal forests, bogs, and heathlands. Molecular clock estimates suggest that the symbiosis originated approximately 140 million years ago.

<span class="mw-page-title-main">Rhizobacteria</span> Group of bacteria affecting plant growth

Rhizobacteria are root-associated bacteria that can have a detrimental, neutral or beneficial effect on plant growth. The name comes from the Greek rhiza, meaning root. The term usually refers to bacteria that form symbiotic relationships with many plants (mutualism). Rhizobacteria are often referred to as plant growth-promoting rhizobacteria, or PGPRs. The term PGPRs was first used by Joseph W. Kloepper in the late 1970s and has become commonly used in scientific literature.

<span class="mw-page-title-main">Biofertilizer</span> Substance with micro-organisms

A biofertilizer is a substance which contains living micro-organisms which, when applied to seeds, plant surfaces, or soil, colonize the rhizosphere or the interior of the plant and promotes growth by increasing the supply or availability of primary nutrients to the host plant. Biofertilizers add nutrients through the natural processes of nitrogen fixation, solubilizing phosphorus, and stimulating plant growth through the synthesis of growth-promoting substances. The micro-organisms in biofertilizers restore the soil's natural nutrient cycle and build soil organic matter. Through the use of biofertilizers, healthy plants can be grown, while enhancing the sustainability and the health of the soil. Biofertilizers can be expected to reduce the use of synthetic fertilizers and pesticides, but they are not yet able to replace their use. Since they play several roles, a preferred scientific term for such beneficial bacteria is "plant-growth promoting rhizobacteria" (PGPR).

Agricultural microbiology is a branch of microbiology dealing with plant-associated microbes and plant and animal diseases. It also deals with the microbiology of soil fertility, such as microbial degradation of organic matter and soil nutrient transformations.

Nitrogen nutrition in the arbuscular mycorrhizal system refers to...

The mycorrhizosphere is the region around a mycorrhizal fungus in which nutrients released from the fungus increase the microbial population and its activities. The roots of most terrestrial plants, including most crop plants and almost all woody plants, are colonized by mycorrhiza-forming symbiotic fungi. In this relationship, the plant roots are infected by a fungus, but the rest of the fungal mycelium continues to grow through the soil, digesting and absorbing nutrients and water and sharing these with its plant host. The fungus in turn benefits by receiving photosynthetic sugars from its host. The mycorrhizosphere consists of roots, hyphae of the directly connected mycorrhizal fungi, associated microorganisms, and the soil in their direct influence.

<span class="mw-page-title-main">Mycorrhizal fungi and soil carbon storage</span> Terrestrial ecosystem

Soil carbon storage is an important function of terrestrial ecosystems. Soil contains more carbon than plants and the atmosphere combined. Understanding what maintains the soil carbon pool is important to understand the current distribution of carbon on Earth, and how it will respond to environmental change. While much research has been done on how plants, free-living microbial decomposers, and soil minerals affect this pool of carbon, it is recently coming to light that mycorrhizal fungi—symbiotic fungi that associate with roots of almost all living plants—may play an important role in maintaining this pool as well. Measurements of plant carbon allocation to mycorrhizal fungi have been estimated to be 5 to 20% of total plant carbon uptake, and in some ecosystems the biomass of mycorrhizal fungi can be comparable to the biomass of fine roots. Recent research has shown that mycorrhizal fungi hold 50 to 70 percent of the total carbon stored in leaf litter and soil on forested islands in Sweden. Turnover of mycorrhizal biomass into the soil carbon pool is thought to be rapid and has been shown in some ecosystems to be the dominant pathway by which living carbon enters the soil carbon pool.

<span class="mw-page-title-main">Ectomycorrhiza</span> Non-penetrative symbiotic association between a fungus and the roots of a vascular plant

An ectomycorrhiza is a form of symbiotic relationship that occurs between a fungal symbiont, or mycobiont, and the roots of various plant species. The mycobiont is often from the phyla Basidiomycota and Ascomycota, and more rarely from the Zygomycota. Ectomycorrhizas form on the roots of around 2% of plant species, usually woody plants, including species from the birch, dipterocarp, myrtle, beech, willow, pine and rose families. Research on ectomycorrhizas is increasingly important in areas such as ecosystem management and restoration, forestry and agriculture.

<i>Rhizophagus irregularis</i> Arbuscular mycorrhizal fungus used as a soil inoculant

Rhizophagus irregularis is an arbuscular mycorrhizal fungus used as a soil inoculant in agriculture and horticulture. Rhizophagus irregularis is also commonly used in scientific studies of the effects of arbuscular mycorrhizal fungi on plant and soil improvement. Until 2001, the species was known and widely marketed as Glomus intraradices, but molecular analysis of ribosomal DNA led to the reclassification of all arbuscular fungi from Zygomycota phylum to the Glomeromycota phylum.

<span class="mw-page-title-main">Root microbiome</span> Microbe community of plant roots

The root microbiome is the dynamic community of microorganisms associated with plant roots. Because they are rich in a variety of carbon compounds, plant roots provide unique environments for a diverse assemblage of soil microorganisms, including bacteria, fungi, and archaea. The microbial communities inside the root and in the rhizosphere are distinct from each other, and from the microbial communities of bulk soil, although there is some overlap in species composition.

Orchid mycorrhizae are endomycorrhizal fungi which develop symbiotic relationships with the roots and seeds of plants of the family Orchidaceae. Nearly all orchids are myco-heterotrophic at some point in their life cycle. Orchid mycorrhizae are critically important during orchid germination, as an orchid seed has virtually no energy reserve and obtains its carbon from the fungal symbiont.

<span class="mw-page-title-main">Mycorrhiza helper bacteria</span> Group of organisms

Mycorrhiza helper bacteria (MHB) are a group of organisms that form symbiotic associations with both ectomycorrhiza and arbuscular mycorrhiza. MHBs are diverse and belong to a wide variety of bacterial phyla including both Gram-negative and Gram-positive bacteria. Some of the most common MHBs observed in studies belong to the phylas Pseudomonas and Streptomyces. MHBs have been seen to have extremely specific interactions with their fungal hosts at times, but this specificity is lost with plants. MHBs enhance mycorrhizal function, growth, nutrient uptake to the fungus and plant, improve soil conductance, aid against certain pathogens, and help promote defense mechanisms. These bacteria are naturally present in the soil, and form these complex interactions with fungi as plant root development starts to take shape. The mechanisms through which these interactions take shape are not well-understood and needs further study.

Mycorrhizal amelioration of heavy metals or pollutants is a process by which mycorrhizal fungi in a mutualistic relationship with plants can sequester toxic compounds from the environment, as a form of bioremediation.

Disease suppressive soils function to prevent the establishment of pathogens in the rhizosphere of plants. These soils develop through the establishment of beneficial microbes, known as plant growth-promoting rhizobacteria (PGPR) in the rhizosphere of plant roots. These mutualistic microbes function to increase plant health by fighting against harmful soil microbes either directly or indirectly. As beneficial bacteria occupy space around plant roots they outcompete harmful pathogens by releasing pathogenic suppressive metabolites.

References

  1. 1 2 Bashan, Yoav; Holguin, Gina (1997). "Azospirillum – plant relationships: Environmental and physiological advances (1990–1996)". Canadian Journal of Microbiology. 43 (2): 103–121. doi:10.1139/m97-015. S2CID   6840330.
  2. Sullivan, Preston (2001). Alternative Soil Amendments (PDF) (Report). Appropriate Technology Transfer for Rural Areas.
  3. Chow, Chanelle; Padda, Kiran Preet; Puri, Akshit; Chanway, Chris P. (2022-09-20). "An Archaic Approach to a Modern Issue: Endophytic Archaea for Sustainable Agriculture". Current Microbiology. 79 (11): 322. doi:10.1007/s00284-022-03016-y. ISSN   1432-0991. PMID   36125558. S2CID   252376815.
  4. 1 2 Galal, Y. G. M., El-Ghandour, I. A., Osman, M. E. & Abdel Raouf, A. M. N. (2003), The effect of inoculation by mycorrhizae and rhizobium on the growth and yield of wheat in relation to nitrogen and phosphorus fertilization as assessed by 15n techniques, Symbiosis, 34(2), 171-183.
  5. 1 2 3 4 5 Brady, Nyle C. (2010). Elements of the nature and properties of soils. Weil, Ray R. (Third ed.). Upper Saddle River, N.J. pp. 343–346. ISBN   9780135014332. OCLC   276340542.{{cite book}}: CS1 maint: location missing publisher (link)
  6. "Mycorrhiza | David Sylvia's Web Resources". sites.psu.edu. Retrieved 2019-10-24.
  7. 1 2 Chapin, F. Stuart; Matson, Pamela A.; Vitousek, Peter M. (2011). Principles of Terrestrial Ecosystem Ecology. New York, NY: Springer New York. pp. 243–244. doi:10.1007/978-1-4419-9504-9. ISBN   9781441995032.
  8. Adesemoye, A. O.; Torbert, H. A.; Kloepper, J. W. (November 2009). "Plant Growth-Promoting Rhizobacteria Allow Reduced Application Rates of Chemical Fertilizers". Microbial Ecology. 58 (4): 921–929. doi:10.1007/s00248-009-9531-y. ISSN   0095-3628. PMID   19466478. S2CID   8789559.
  9. Hirrel, M.C. and Gerdemann, J.W., 1980. Improved Growth of Onion and Bell Pepper in Saline Soils by Two Vesicular-Arbuscular Mycorrhizal Fungi 1. Soil Science Society of America Journal, 44(3), pp.654-655.
  10. Ferrazzano, S. and Williamson, P. (2013). Benefits of mycorrhizal inoculation in reintroduction of endangered plant species under drought conditions. Journal of Arid Environments, 98, pp.123-125.
  11. Firmin, S., Labidi, S., Fontaine, J., Laruelle, F., Tisserant, B., Nsanganwimana, F., Pourrut, B., Dalpé, Y., Grandmougin, A., Douay, F., Shirali, P., Verdin, A. and Lounès-Hadj Sahraoui, A. (2015). Arbuscular mycorrhizal fungal inoculation protects Miscanthus×giganteus against trace element toxicity in a highly metal-contaminated site. Science of the Total Environment, 527-528, pp.91-99.
  12. Kohler, J., Caravaca, F., Azcón, R., Díaz, G. and Roldán, A. (2015). The combination of compost addition and arbuscular mycorrhizal inoculation produced positive and synergistic effects on the phytomanagement of a semiarid mine tailing. Science of the Total Environment, 514, pp.42-48.
  13. Diedhiou, A., Mbaye, F., Mbodj, D., Faye, M., Pignoly, S., Ndoye, I., Djaman, K., Gaye, S., Kane, A., Laplaze, L., Manneh, B. and Champion, A. (2016). Field Trials Reveal Ecotype-Specific Responses to Mycorrhizal Inoculation in Rice. PLOS ONE, 11(12), p.e0167014.
  14. Liu, L., Li, J., Yue, F., Yan, X., Wang, F., Bloszies, S. and Wang, Y. (2018). Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil. Chemosphere, 194, pp.495-503.
  15. 1 2 3 Belimov, A. A., Kojemiakov, A. P. & Chuvarliyeva, C. V. (1995a) Interaction between barley and mixed cultures of nitrogen fixing and phosphate-solubilising bacteria. Plant and Soil, 173, 29-37.
  16. Kennedy, Ivan R. (2001). "Biofertilisers in action". Functional Plant Biology. 28 (9): 825. doi:10.1071/pp01169. ISSN   1445-4408.
  17. Khammas, K. M.; Kaiser, P. (August 1992). "Pectin decomposition and associated nitrogen fixation by mixed cultures of Azospirillum and Bacillus species". Canadian Journal of Microbiology. 38 (8): 794–797. doi:10.1139/m92-129. ISSN   0008-4166. PMID   1458371.
  18. Cacciari, Isabella; Lippi, Daniela; Ippoliti, Silvia; Pietrosanti, Tito; Pietrosanti, Walter (July 1989). "Response to oxygen of diazotrophic Azospirillum brasilense ? Arthrobacter giacomelloi mixed batch culture". Archives of Microbiology. 152 (2): 111–114. doi:10.1007/bf00456086. ISSN   0302-8933. S2CID   10850392.
  19. Singh, S. & Kapoor, K. K. (1999) Inoculation with phosphate-solubilising microorganisms and a vesicular-arbuscular mycorrhizal fungus improves dry matter yield and nutrient uptake by wheat grown in sandy soil. Biology and Fertility of Soils, 28, 139-144.
  20. Galal, Y. G. M., El-Ghandour, I. A., Osman, M. E. & Abdel Raouf, A. M. N. (2003), The effect of inoculation by mycorrhizae and rhizobium on the growth and yield of wheat in relation to nitrogen and phosphorus fertilization as assessed by 15n techniques, Symbiosis, 34(2), 171-183.

Bibliography