List of endophytes

Last updated

Contents

Endophytes are micro-organisms living within the tissue of a plant as endosymbionts, without causing symptoms of disease. Some of them are mutualistic symbionts with beneficial effects on their host, such as improved growth or resistance against disease or environmental stress, and are being used as microbial inoculants. However, pathogens and saprophytes may also be endophytic at some point of their life cycle. Endophytes are distinct from mycorrhizal fungi or rhizosphere microbes in that they live entirely within the plant. Most endophytes known are bacteria or fungi, although there are also some endophytic algae and oomycetes.

This list contains genera with endophytic species (but which may also have non-endophytic species). Species are only listed in notable cases. Where specific variants or cultivars of a species are endophytic, this is detailed on the taxon's page. The host range is "wide" when it does not include only a specific lineage of plants; in that case, the lineage is given.

Bacteria

See also Rhizobia for the nitrogen-fixing bacteria on roots of legumes (Fabaceae).

Genus/speciesPhylumClassOrderHost rangeRoots/shoots colonized?
Acidovorax facilis ProteobacteriaBetaproteobacteriaBurkholderiales ? ?
Bradyrhizobium ProteobacteriaAlphaproteobacteriaRhizobiales legumes roots
Rhizobium ProteobacteriaAlphaproteobacteriaRhizobiales legumes roots
Rhodococcus rhodochrous ActinobacteriaActinobacteriaActinomycetales ? ?
Rhodococcus rhodochrous ActinobacteriaActinobacteriaActinomycetales ? ?

Fungi

Genus/speciesPhylumClassOrderHost rangeRoots/shoots colonized?
Colletotrichum AscomycotaSordariomycetesGlomerellaleswideshoots & roots
Curvularia AscomycotaDothideomycetesPleosporaleswideshoots & roots
Epichloë AscomycotaSordariomycetesHypocreales grasses shoots
Fusarium AscomycotaSordariomycetesHypocrealeswideshoots & roots
Mycosphaerella AscomycotaDothideomycetesCapnodiales ? ?
Neotyphodium AscomycotaSordariomycetesHypocreales grasses shoots
Piriformospora BasidiomycotaAgaricomycetesSebacinaleswideroots
Cladosporium Ascomycota Dothideomycetes Capnodiales wide
Serendipita BasidiomycotaAgaricomycetesSebacinaleswideroots

Algae and oomycetes

Genus/speciesPhylumClassOrderHost rangeRoots/shoots colonized?
Pythium oligandrumHeterokontophyta, OomycotaPythialeswideroots

See also

Related Research Articles

Ascomycota Division or phylum of fungi

Ascomycota is a phylum of the kingdom Fungi that, together with the Basidiomycota, forms the subkingdom Dikarya. Its members are commonly known as the sac fungi or ascomycetes. It is the largest phylum of Fungi, with over 64,000 species. The defining feature of this fungal group is the "ascus", a microscopic sexual structure in which nonmotile spores, called ascospores, are formed. However, some species of the Ascomycota are asexual, meaning that they do not have a sexual cycle and thus do not form asci or ascospores. Familiar examples of sac fungi include morels, truffles, brewer's yeast and baker's yeast, dead man's fingers, and cup fungi. The fungal symbionts in the majority of lichens such as Cladonia belong to the Ascomycota.

Mycorrhiza Symbiotic association between a fungus and the roots of a vascular plant

A mycorrhiza is a mutual symbiotic association between a fungus and a plant. The term mycorrhiza refers to the role of the fungus in the plant's rhizosphere, its root system. Mycorrhizae play important roles in plant nutrition, soil biology, and soil chemistry.

Lycopodiopsida Class of vascular plants

Lycopodiopsida is a class of herbaceous vascular plants known as lycopods, lycophytes or other terms including the component lyco-. Members of the class are called clubmosses, firmosses, spikemosses and quillworts. They have dichotomously branching stems bearing simple leaves called microphylls and reproduce by means of spores borne in sporangia on the sides of the stems at the bases of the leaves. Although living species are small, during the Carboniferous, extinct tree-like forms formed huge forests that dominated the landscape and contributed to coal deposits.

Rhizobia

Rhizobia are diazotrophic bacteria that fix nitrogen after becoming established inside the root nodules of legumes (Fabaceae). To express genes for nitrogen fixation, rhizobia require a plant host; they cannot independently fix nitrogen. In general, they are gram negative, motile, non-sporulating rods.

Endophyte

An endophyte is an endosymbiont, often a bacterium or fungus, that lives within a plant for at least part of its life cycle without causing apparent disease. Endophytes are ubiquitous and have been found in all species of plants studied to date; however, most of the endophyte/plant relationships are not well understood. Some endophytes may enhance host growth, nutrient acquisition and improve the plant's ability to tolerate abiotic stresses, such as drought, salinity and decrease biotic stresses by enhancing plant resistance to insects, pathogens and herbivores.

Diazotrophs are bacteria and archaea that fix atmospheric nitrogen gas into a more usable form such as ammonia.

Arbuscular mycorrhiza Symbiotic penetrative association between a fungus and the roots of a vascular plant

An arbuscular mycorrhiza(AM) is a type of mycorrhiza in which the symbiont fungus penetrates the cortical cells of the roots of a vascular plant forming arbuscules.

Rhizosphere

The rhizosphere is the narrow region of soil or substrate that is directly influenced by root secretions and associated soil microorganisms known as the root microbiome. The rhizosphere involving the soil pores contains many bacteria and other microorganisms that feed on sloughed-off plant cells, termed rhizodeposition, and the proteins and sugars released by roots, termed root exudates. This symbiosis leads to more complex interactions, influencing plant growth and competition for resources. Much of the nutrient cycling and disease suppression by antibiotics required by plants, occurs immediately adjacent to roots due to root exudates and metabolic products of symbiotic and pathogenic communities of microorganisms. The rhizosphere also provides space to produce allelochemicals to control neighbours and relatives.

Symbiotic bacteria are bacteria living in symbiosis with another organism or each other. For example, rhizobia living in root nodules of legumes provide nitrogen fixing activity for these plants. Symbiosis was first defined by Marko de Bary in 1869 in a work entitled "Die Erscheinung der Symbiose" in which he defined the term as "namely, the living together of parasite and host". The definition of symbiosis has evolved to encompass a sustained relationship between two or more different organisms "over a considerable fraction of the life of the host." In addition, this relationship is often beneficial for at least one of the organisms involved. There are three main types of symbiotic relationships: commensalism, mutualism, and parasitism. Commensalism is when one organism benefits and the other is neither harmed nor benefits. Mutualism is when both organisms benefit. Lastly, parasitism is when one organism benefits while the other organism is harmed. Organisms can also be involved in multiple of these symbiotic relationships simultaneously.

<i>Epichloƫ</i> Genus of fungi

Epichloë is a genus of ascomycete fungi forming an endophytic symbiosis with grasses. Grass choke disease is a symptom in grasses induced by some Epichloë species, which form spore-bearing mats (stromata) on tillers and suppress the development of their host plant's inflorescence. For most of their life cycle however, Epichloë grow in the intercellular space of stems, leaves, inflorescences, and seeds of the grass plant without incurring symptoms of disease. In fact, they provide several benefits to their host, including the production of different herbivore-deterring alkaloids, increased stress resistance, and growth promotion.

<i>Festuca arundinacea</i> Species of flowering plant

Festuca arundinacea (syn., Schedonorus arundinaceus and Lolium arundinaceum) is a species of grass commonly known as tall fescue. It is a cool-season perennial C3 species of bunchgrass native to Europe. It is an important forage grass throughout Europe, and many cultivars have been used in agriculture. It is also an ornamental grass in gardens, and a phytoremediation plant.

Microbial inoculants also known as soil inoculants or bioinoculants are agricultural amendments that use beneficial rhizosphericic or endophytic microbes to promote plant health. Many of the microbes involved form symbiotic relationships with the target crops where both parties benefit (mutualism). While microbial inoculants are applied to improve plant nutrition, they can also be used to promote plant growth by stimulating plant hormone production.

Fungus Biological kingdom, separate from plants and animals

A fungus is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as a kingdom, separately from the other eukaryotic kingdoms, which by one traditional classification include Plantae, Animalia, Protozoa, and Chromista.

Plant use of endophytic fungi in defense

Plant use of endophytic fungi in defense occurs when endophytic fungi, which live symbiotically with the majority of plants by entering their cells, are utilized as an indirect defense against herbivores. In exchange for carbohydrate energy resources, the fungus provides benefits to the plant which can include increased water or nutrient uptake and protection from phytophagous insects, birds or mammals. Once associated, the fungi alter nutrient content of the plant and enhance or begin production of secondary metabolites. The change in chemical composition acts to deter herbivory by insects, grazing by ungulates and/or oviposition by adult insects. Endophyte-mediated defense can also be effective against pathogens and non-herbivory damage.

Soil microbiology is the study of microorganisms in soil, their functions, and how they affect soil properties. It is believed that between two and four billion years ago, the first ancient bacteria and microorganisms came about on Earth's oceans. These bacteria could fix nitrogen, in time multiplied, and as a result released oxygen into the atmosphere. This led to more advanced microorganisms, which are important because they affect soil structure and fertility. Soil microorganisms can be classified as bacteria, actinomycetes, fungi, algae and protozoa. Each of these groups has characteristics that define them and their functions in soil.

Marine fungi Species of fungi that live in marine or estuarine environments

Marine fungi are species of fungi that live in marine or estuarine environments. They are not a taxonomic group, but share a common habitat. Obligate marine fungi grow exclusively in the marine habitat while wholly or sporadically submerged in sea water. Facultative marine fungi normally occupy terrestrial or freshwater habitats, but are capable of living or even sporulating in a marine habitat. About 444 species of marine fungi have been described, including seven genera and ten species of basidiomycetes, and 177 genera and 360 species of ascomycetes. The remainder of the marine fungi are chytrids and mitosporic or asexual fungi. Many species of marine fungi are known only from spores and it is likely a large number of species have yet to be discovered. In fact, it is thought that less than 1% of all marine fungal species have been described, due to difficulty in targeting marine fungal DNA and difficulties that arise in attempting to grow cultures of marine fungi. It is impracticable to culture many of these fungi, but their nature can be investigated by examining seawater samples and undertaking rDNA analysis of the fungal material found.

Root microbiome

The root microbiome is the dynamic community of microorganisms associated with plant roots. Because they are rich in a variety of carbon compounds, plant roots provide unique environments for a diverse assemblage of soil microorganisms, including bacteria, fungi and archaea. The microbial communities inside the root and in the rhizosphere are distinct from each other, and from the microbial communities of bulk soil, although there is some overlap in species composition.

Dark septate endophytes (DSE) are a group of endophytic fungi characterized by their morphology of melanized, septate, hyphae. This group is likely paraphyletic, and contain conidial as well as sterile fungi that colonize roots intracellularly or intercellularly. Very little is known about the number of fungal taxa within this group, but all are in the Ascomycota. They are found in over 600 plant species and across 114 families of angiosperms and gymnosperms and co-occur with other types of mycorrhizal fungi. They have a wide global distribution and can be more abundant in stressed environments. Much of their taxonomy, physiology, and ecology are unknown.

Mycobiome The fungal community in and on an organism

The mycobiome, mycobiota, or fungal microbiome, is the fungal community in and on an organism.

Plant holobiont

Since the colonization of land by ancestral plant lineages 450 million years ago, plants and their associated microbes have been interacting with each other, forming an assemblage of species that is often referred to as a holobiont. Selective pressure acting on holobiont components has likely shaped plant-associated microbial communities and selected for host-adapted microorganisms that impact plant fitness. However, the high microbial densities detected on plant tissues, together with the fast generation time of microbes and their more ancient origin compared to their host, suggest that microbe-microbe interactions are also important selective forces sculpting complex microbial assemblages in the phyllosphere, rhizosphere, and plant endosphere compartments.