Fertigation

Last updated
Fertigation using white poly bag Polibeg putih fertigasi 2.JPG
Fertigation using white poly bag
Fertilizer mixed with water connected to a drip irrigation system Fertigation (fertilizer and irrigation).jpg
Fertilizer mixed with water connected to a drip irrigation system

Fertigation is the injection of fertilizers, used for soil amendments, water amendments and other water-soluble products into an irrigation system.

Contents

Chemigation, the injection of chemicals into an irrigation system, is related to fertigation. The two terms are sometimes used interchangeably however chemigation is generally a more controlled and regulated process due to the nature of the chemicals used. Chemigation often involves insecticides, herbicides, and fungicides, some of which pose health threat to humans, animals, and the environment.

Uses

Fertigation is practiced extensively in commercial agriculture and horticulture. Fertigation is also increasingly being used for landscaping as dispenser units become more reliable and easier to use. Fertigation is used to add additional nutrients or to correct nutrient deficiencies detected in plant tissue analysis. It is usually practiced on the high-value crops such as vegetables, turf, fruit trees, and ornamentals.

Commonly used chemicals

Nitrogen is the most commonly used plant nutrient. Naturally occurring nitrogen (N2) is a diatomic molecule which makes up approximately 80% of the Earth's atmosphere. Most plants cannot directly consume diatomic nitrogen, therefore nitrogen must be contained as a component of other chemical substances which plants can consume. Commonly, anhydrous ammonia, ammonium nitrate, and urea are used as bioavailable sources of nitrogen. Other nutrients needed by plants include phosphorus and potassium. Like nitrogen, plants require these substances to live but they must be contained in other chemical substances such as monoammonium phosphate or diammonium phosphate to serve as bioavailable nutrients. A common source of potassium is muriate of potash which is chemically potassium chloride. [1] A soil fertility analysis is used to determine which of the more stable nutrients should be used.

Fungicides are used on sod (or turf), like golf courses and sodfarms. One of the earliest was cyproconazole marketed in 1995. [2]

Advantages

The benefits of fertigation methods over conventional or drop-fertilizing methods include:

Disadvantages

Methods used

System design

Fertigation assists distribution of fertilizers for farmers. The simplest type of fertigation system consists of a tank with a pump, distribution pipes, capillaries, and a dripper pen.

All systems should be placed on a raised or sealed platform, not in direct contact with the earth. Each system should also be fitted with chemical spill trays.

Because of the potential risk of contamination in the potable (drinking) water supply, a backflow prevention device is required for most fertigation systems. Backflow requirements may vary greatly. Therefore, it is very important to understand the proper level of backflow prevention required by law. In the United States, the minimum backflow protection is usually determined by state regulation. Each city or town may set the level of protection required.

See also

Related Research Articles

<span class="mw-page-title-main">Hydroponics</span> Growing plants without soil using nutrients in water

Hydroponics is a type of horticulture and a subset of hydroculture which involves growing plants, usually crops or medicinal plants, without soil, by using water-based mineral nutrient solutions in an artificial environment. Terrestrial or aquatic plants may grow freely with their roots exposed to the nutritious liquid or the roots may be mechanically supported by an inert medium such as perlite, gravel, or other substrates.

<span class="mw-page-title-main">Fertilizer</span> Substance added to soils to supply plant nutrients for a better growth

A fertilizer or fertiliser is any material of natural or synthetic origin that is applied to soil or to plant tissues to supply plant nutrients. Fertilizers may be distinct from liming materials or other non-nutrient soil amendments. Many sources of fertilizer exist, both natural and industrially produced. For most modern agricultural practices, fertilization focuses on three main macro nutrients: nitrogen (N), phosphorus (P), and potassium (K) with occasional addition of supplements like rock flour for micronutrients. Farmers apply these fertilizers in a variety of ways: through dry or pelletized or liquid application processes, using large agricultural equipment or hand-tool methods.

<span class="mw-page-title-main">Irrigation</span> Agricultural artificial application of water to land

Irrigation is the practice of applying controlled amounts of water to land to help grow crops, landscape plants, and lawns. Irrigation has been a key aspect of agriculture for over 5,000 years and has been developed by many cultures around the world. Irrigation helps to grow crops, maintain landscapes, and revegetate disturbed soils in dry areas and during times of below-average rainfall. In addition to these uses, irrigation is also employed to protect crops from frost, suppress weed growth in grain fields, and prevent soil consolidation. It is also used to cool livestock, reduce dust, dispose of sewage, and support mining operations. Drainage, which involves the removal of surface and sub-surface water from a given location, is often studied in conjunction with irrigation.

<span class="mw-page-title-main">Agronomy</span> Science of producing and using plants

Agronomy is the science and technology of producing and using plants by agriculture for food, fuel, fiber, chemicals, recreation, or land conservation. Agronomy has come to include research of plant genetics, plant physiology, meteorology, and soil science. It is the application of a combination of sciences such as biology, chemistry, economics, ecology, earth science, and genetics. Professionals of agronomy are termed agronomists.

<span class="mw-page-title-main">Plant nutrition</span> Study of the chemical elements and compounds necessary for normal plant life

Plant nutrition is the study of the chemical elements and compounds necessary for plant growth and reproduction, plant metabolism and their external supply. In its absence the plant is unable to complete a normal life cycle, or that the element is part of some essential plant constituent or metabolite. This is in accordance with Justus von Liebig's law of the minimum. The total essential plant nutrients include seventeen different elements: carbon, oxygen and hydrogen which are absorbed from the air, whereas other nutrients including nitrogen are typically obtained from the soil.

Drip irrigation or trickle irrigation is a type of micro-irrigation system that has the potential to save water and nutrients by allowing water to drip slowly to the roots of plants, either from above the soil surface or buried below the surface. The goal is to place water directly into the root zone and minimize evaporation. Drip irrigation systems distribute water through a network of valves, pipes, tubing, and emitters. Depending on how well designed, installed, maintained, and operated it is, a drip irrigation system can be more efficient than other types of irrigation systems, such as surface irrigation or sprinkler irrigation.

<span class="mw-page-title-main">Nutrient management</span> Management of nutrients in agriculture

Nutrient management is the science and practice directed to link soil, crop, weather, and hydrologic factors with cultural, irrigation, and soil and water conservation practices to achieve optimal nutrient use efficiency, crop yields, crop quality, and economic returns, while reducing off-site transport of nutrients (fertilizer) that may impact the environment. It involves matching a specific field soil, climate, and crop management conditions to rate, source, timing, and place of nutrient application.

<span class="mw-page-title-main">Soil fertility</span> The ability of a soil to sustain agricultural plant growth

Soil fertility refers to the ability of soil to sustain agricultural plant growth, i.e. to provide plant habitat and result in sustained and consistent yields of high quality. It also refers to the soil's ability to supply plant/crop nutrients in the right quantities and qualities over a sustained period of time. A fertile soil has the following properties:

<span class="mw-page-title-main">Agricultural wastewater treatment</span> Farm management for controlling pollution from confined animal operations and surface runoff

Agricultural wastewater treatment is a farm management agenda for controlling pollution from confined animal operations and from surface runoff that may be contaminated by chemicals in fertilizer, pesticides, animal slurry, crop residues or irrigation water. Agricultural wastewater treatment is required for continuous confined animal operations like milk and egg production. It may be performed in plants using mechanized treatment units similar to those used for industrial wastewater. Where land is available for ponds, settling basins and facultative lagoons may have lower operational costs for seasonal use conditions from breeding or harvest cycles. Animal slurries are usually treated by containment in anaerobic lagoons before disposal by spray or trickle application to grassland. Constructed wetlands are sometimes used to facilitate treatment of animal wastes.

<span class="mw-page-title-main">Organic fertilizer</span> Fertilizer developed from natural processes

Organic fertilizers are fertilizers that are naturally produced. Fertilizers are materials that can be added to soil or plants, in order to provide nutrients and sustain growth. Typical organic fertilizers include all animal waste including meat processing waste, manure, slurry, and guano; plus plant based fertilizers such as compost; and biosolids. Inorganic "organic fertilizers" include minerals and ash. The organic-mess refers to the Principles of Organic Agriculture, which determines whether a fertilizer can be used for commercial organic agriculture, not whether the fertilizer consists of organic compounds.

Agrogeology is the study of the origins of minerals known as agrominerals and their applications. These minerals are of importance to farming and horticulture, especially with regard to soil fertility and fertilizer components. These minerals are usually essential plant nutrients. Agrogeology can also be defined as the application of geology to problems in agriculture, particularly in reference to soil productivity and health. This field is a combination of a few different fields, including geology, soil science, agronomy, and chemistry. The overall objective is to advance agricultural production by using geological resources to improve chemical and physical aspects of soil.

Soil acidification is the buildup of hydrogen cations, which reduces the soil pH. Chemically, this happens when a proton donor gets added to the soil. The donor can be an acid, such as nitric acid, sulfuric acid, or carbonic acid. It can also be a compound such as aluminium sulfate, which reacts in the soil to release protons. Acidification also occurs when base cations such as calcium, magnesium, potassium and sodium are leached from the soil.

<span class="mw-page-title-main">Leaching (agriculture)</span> Loss of water-soluble plant nutrients from soil due to rain and irrigation

In agriculture, leaching is the loss of water-soluble plant nutrients from the soil, due to rain and irrigation. Soil structure, crop planting, type and application rates of fertilizers, and other factors are taken into account to avoid excessive nutrient loss. Leaching may also refer to the practice of applying a small amount of excess irrigation where the water has a high salt content to avoid salts from building up in the soil. Where this is practiced, drainage must also usually be employed, to carry away the excess water.

<span class="mw-page-title-main">Golf course turf</span>

Golf course turf is the grass covering golf courses, which is used as a playing surface in the sport of golf. The grass is usually maintained by a greenskeeper to control weeds, insects with pesticides, plant fungal diseases with fungicides and to introduce nutrients such as nitrogen fertilization. The grass is kept at a constant height by mowing.

This glossary of viticultural terms list some of terms and definitions involved in growing grapes for use in winemaking.

<span class="mw-page-title-main">Nutrient pollution</span> Contamination of water by excessive inputs of nutrients

Nutrient pollution, a form of water pollution, refers to contamination by excessive inputs of nutrients. It is a primary cause of eutrophication of surface waters, in which excess nutrients, usually nitrogen or phosphorus, stimulate algal growth. Sources of nutrient pollution include surface runoff from farm fields and pastures, discharges from septic tanks and feedlots, and emissions from combustion. Raw sewage is a large contributor to cultural eutrophication since sewage is high in nutrients. Releasing raw sewage into a large water body is referred to as sewage dumping, and still occurs all over the world. Excess reactive nitrogen compounds in the environment are associated with many large-scale environmental concerns. These include eutrophication of surface waters, harmful algal blooms, hypoxia, acid rain, nitrogen saturation in forests, and climate change.

CULTAN Fertilization, or Controlled Uptake Long Term Ammonium Nutrition, is a type of injection fertilization where the entire amount of nitrogen needed for a plant to grow is injected at one time. During CULTAN fertilization, nitrogen is applied at the first signs of nitrogen deficiency in plants. Fertilizer is more commonly spread on the surface of fields in either a liquid or powder form by spraying it.

<span class="mw-page-title-main">Haifa Group</span>

Haifa Group is a private international corporation which primarily manufactures Potassium Nitrate for agriculture and industry, specialty plant nutrients and food phosphates. Haifa Group (Haifa) is the world pioneer in developing and supplying Potassium Nitrate and Specialty Plant Nutrients for advanced agriculture in various climates, weather, and soil conditions. Haifa also manufactures Controlled Release Fertilizers (CRF) for agriculture, horticulture, ornamentals, and turf. Many of Haifa's fertilizers can be used as a fertilizer solution that is applied through drip irrigation. This latter application is the principal driver of demand today, now that more countries are turning to controlled irrigation systems that make more efficient use of water.

<span class="mw-page-title-main">Subsurface textile irrigation</span>

Subsurface Textile Irrigation (SSTI) is a technology designed specifically for subsurface irrigation in all soil textures from desert sands to heavy clays. The use of SSTI will significantly reduce the usage of water, fertilizer and herbicide. It will lower on-going operational costs and, if maintained properly, will last for decades. By delivering water and nutrients directly to the root zone, plants are healthier and have a far greater yield.

<span class="mw-page-title-main">Reuse of human excreta</span> Safe, beneficial use of human excreta mainly in agriculture (after treatment)

Reuse of human excreta is the safe, beneficial use of treated human excreta after applying suitable treatment steps and risk management approaches that are customized for the intended reuse application. Beneficial uses of the treated excreta may focus on using the plant-available nutrients that are contained in the treated excreta. They may also make use of the organic matter and energy contained in the excreta. To a lesser extent, reuse of the excreta's water content might also take place, although this is better known as water reclamation from municipal wastewater. The intended reuse applications for the nutrient content may include: soil conditioner or fertilizer in agriculture or horticultural activities. Other reuse applications, which focus more on the organic matter content of the excreta, include use as a fuel source or as an energy source in the form of biogas.

References

  1. "Potassium Fertilizers". Penn State Extension (Penn State Extension). Archived from the original on 2016-12-20. Retrieved 2014-09-16.
  2. EPA (September 1995). "cyproconazole - Registration of Sentinel 40 WG Turf Fungicide (EPA Reg. No. 55947-132)". EPA. Retrieved 4 June 2015.
  3. Hou, Z., Li, P., Li, B. et al. Plant Soil (2007) 290: 115. doi : 10.1007/s11104-006-9140-1
  4. Elhindi, Khalid, El-Hendawy, Salah, Abdel-Salam, Eslam, Elgorban, Abdallah, & Ahmed, Mukhtar. (2016). Impacts of fertigation via surface and subsurface drip irrigation on growth rate, yield and flower quality of Zinnia elegans. Bragantia, 75(1), 96-107. Epub December 22, 2015. doi : 10.1590/1678-4499.176
  5. Falivene, Steven. "Horticultural fertigation - techniques, equipment and management". NSW Department of Primary Industries. New South Wales Government. Retrieved 4 November 2021.

Bibliography

  1. Asadi, M.E., 1998. "Water and nitrogen management to reduce impact of nitrates". Proceedings of the 5th International Agricultural Engineering conference, December 7–10, Bangkok, Thailand, PP.602–616.
  2. Asadi, M.E., Clemente, R.S.2000. "Impact of nitrogen fertilizer use on the environment". Proceedings of the 6th International Agricultural Engineering Conference, December 4–7, Bangkok, Thailand. PP.413–423.
  3. Asadi, M.E., Clemente, R.S., Gupta, A.D., Loof, R., and Hansen, G.K. 2002. "Impacts of fertigation Via sprinkler irrigation on nitrate leaching and corn yield on an acid - sulphate soil in Thailand. Agricultural Water Management" 52(3): 197–213.
  4. Asadi, M.E., 2004. "Optimum utilization of water and nitrogen fertilizers in sustainable agriculture". Programme and Abstracts N2004. The Third International Nitrogen Conference. October 12–16, Nanjing, China. p. 68.
  5. Asadi, M.E., 2005. "Fertigation as an engineering system to enhance nitrogen fertilizer efficiency". Proceedings of the Second International Congress: Information Technology in Agriculture, Food and Environment, (ITAFE), October 12–14, Adana, Turkey, pp. 525–532.
  6. Department of Natural Resources, Environment, "Fertigation systems." Web. 4 May 2009.
  7. Hanson, Blaine R., Hopmans, Jan, Simunek, Jirka. "Effect of Fertigation Strategy on Nitrogen Availability and Nitrate Leaching using Microirrigation". HortScience 2005 40: 1096
  8. North Carolina Department of Agriculture and Consumer Services, www.ncagr.com/fooddrug/pesticid/chemigation2003.pdf "Chemigation & Fertigation". (2003) 4 May 2009.
  9. Neilsen, Gerry, Kappel, Frank, Neilsen, Denise. "Fertigation Method Affects Performance of `Lapins' Sweet Cherry on Gisela 5 Rootstock". HortScience 2004 39: 1716–1721
  10. NSW department of primary industries, "Horticultural fertigation" Archived 2013-12-12 at the Wayback Machine . 2000.
  11. Suhaimi, M. Yaseer; Mohammad, A.M.; Mahamud, S.; Khadzir, D. (July 18, 2012). "Effects of substrates on growth and yield of ginger cultivated using soilless culture", Journal of Tropical Agriculture and Food Science, Malaysian Agricultural Research and Development Institute 40(2) pp. 159 - 168. (Selangor)