Agrochemical

Last updated
The Passaic Agricultural Chemical Works in Newark, New Jersey, 1876 Passaic Agricultural Chemical Works. 1876.jpg
The Passaic Agricultural Chemical Works in Newark, New Jersey, 1876

An agrochemical or agrichemical, a contraction of agricultural chemical, is a chemical product used in industrial agriculture. Agrichemical refers to biocides (pesticides including insecticides, herbicides, fungicides and nematicides) and synthetic fertilizers. It may also include hormones and other chemical growth agents. [1] [2]

Contents

Agrochemicals are counted among speciality chemicals.

Categories

Biological action

In most of the cases, agrochemicals refer to pesticides. [3]

Application method

Ecology

Many agrochemicals are toxic, and agrichemicals in bulk storage may pose significant environmental and/or health risks, particularly in the event of accidental spills. In many countries, use of agrichemicals is highly regulated. Government-issued permits for purchase and use of approved agrichemicals may be required. Significant penalties can result from misuse, including improper storage resulting in spillage. On farms, proper storage facilities and labeling, emergency clean-up equipment and procedures, and safety equipment and procedures for handling, application and disposal are often subject to mandatory standards and regulations. Usually, the regulations are carried out through the registration process.

For instance, bovine somatotropin, though widely used in the United States, is not approved in Canada and some other jurisdictions as there are concerns for the health of cows using it.

History

Sumerians from 4500 years ago have said to use insecticides in the form of sulfur compounds. Additionally, the Chinese from about 3200 years ago used mercury and arsenic compounds to control the body lice. [4]

Agrochemicals were introduced to protect crops from pests and enhance crop yields. The most common agrochemicals include pesticides and fertilizers. [5] Chemical fertilizers in the 1960s were responsible for the beginning of the "Green Revolution", where using the same surface of land using intensive irrigation and mineral fertilizers such as nitrogen, phosphorus, and potassium has greatly increased food production. [6] Throughout the 1970s through 1980s, pesticide research continued into producing more selective agrochemicals. [4] Due to the adaptation of pests to these chemicals, more and new agrochemicals were being used, causing side effects in the environment.

Companies

Syngenta was the Chinese owned worldwide leader in agrochemical sales in 2013 at approximately US$10.9 billion, followed by Bayer CropScience, BASF, Dow AgroSciences, Monsanto, and then DuPont with about $3.6 billion. [7] It is still in the worldwide leading position based on sales of year 2019. Based on a statistics by statistica, In 2019, the agrochemical market worldwide was worth approximately $234.2 billion. This is expected to increase to more than $300 billion in 2025. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Pesticide</span> Substance used to destroy pests

Pesticides are substances that are meant to control pests. This includes herbicide, insecticide, nematicide, molluscicide, piscicide, avicide, rodenticide, bactericide, insect repellent, animal repellent, microbicide, fungicide, and lampricide. The most common of these are herbicides, which account for approximately 50% of all pesticide use globally. Most pesticides are intended to serve as plant protection products, which in general, protect plants from weeds, fungi, or insects. In general, a pesticide is a chemical or biological agent that deters, incapacitates, kills, or otherwise discourages pests. Target pests can include insects, plant pathogens, weeds, molluscs, birds, mammals, fish, nematodes (roundworms), and microbes that destroy property, cause nuisance, or spread disease, or are disease vectors. Along with these benefits, pesticides also have drawbacks, such as potential toxicity to humans and other species.

<span class="mw-page-title-main">Pesticide resistance</span> Decreased effectiveness of a pesticide on a pest

Pesticide resistance describes the decreased susceptibility of a pest population to a pesticide that was previously effective at controlling the pest. Pest species evolve pesticide resistance via natural selection: the most resistant specimens survive and pass on their acquired heritable changes traits to their offspring. If a pest has resistance then that will reduce the pesticide's efficacy – efficacy and resistance are inversely related.

Under United States law, pesticide misuse is considered to be the use of a pesticide in a way that violates laws regulating their use or endangers humans or the environment; many of these regulations are laid out in the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA). The most common instances of pesticide misuse are applications inconsistent with the labeling, which can include the use of a material in any way not described on the label, changing dosage rates, or violating specific safety instructions. Pesticide labels have been criticized as a poor risk communication vehicle, leading some officials and researchers to question whether "misuse" is an appropriate term for what are often "unintended uses" resulting from a poor understanding of safety and application instructions. Other kinds of pesticide misuse include the sale or use of an unregistered pesticide or one whose registration has been revoked and the sale or use of an adulterated or misbranded pesticide. Under most jurisdictions, it is illegal to alter or remove pesticide labels, to sell restricted pesticides to an uncertified applicator, or to fail to maintain sales and use records of restricted pesticides.

<span class="mw-page-title-main">Aldicarb</span> Chemical compound (insecticide)

Aldicarb is a carbamate insecticide which is the active substance in the pesticide Temik. It is effective against thrips, aphids, spider mites, lygus, fleahoppers, and leafminers, but is primarily used as a nematicide. Aldicarb is a cholinesterase inhibitor which prevents the breakdown of acetylcholine in the synapse. Aldicarb is considered "extremely hazardous" by the EPA and World Health Organization and has been banned in more than 100 countries. In case of severe poisoning, the victim dies of respiratory failure.

A biopesticide is a biological substance or organism that damages, kills, or repels organisms seen as pests. Biological pest management intervention involves predatory, parasitic, or chemical relationships.

Agricultural chemistry is the study of chemistry, especially organic chemistry and biochemistry, as they relate to agriculture. This includes agricultural production, the use of ammonia in fertilizer, pesticides, and how plant biochemistry can be used to genetically alter crops. Agricultural chemistry is not a distinct discipline, but a common thread that ties together genetics, physiology, microbiology, entomology, and numerous other sciences that impinge on agriculture.

<span class="mw-page-title-main">Organic cotton</span> Cotton grown organically from non-GM plants

Organic cotton is generally defined as cotton that is grown organically in subtropical countries such as India, Turkey, China, and parts of the USA from non-genetically modified plants, and without the use of any synthetic agricultural chemicals such as fertilizers or pesticides aside from the ones allowed by the certified organic labeling. Its production is supposed to promote and enhance biodiversity and biological cycles. In the United States, cotton plantations must also meet the requirements enforced by the National Organic Program (NOP) from the USDA in order to be considered organic. This institution determines the allowed practices for pest control, growing, fertilizing, and handling of organic crops.

<span class="mw-page-title-main">Intensive crop farming</span> Modern form of farming

Intensive crop farming is a modern industrialized form of crop farming. Intensive crop farming's methods include innovation in agricultural machinery, farming methods, genetic engineering technology, techniques for achieving economies of scale in production, the creation of new markets for consumption, patent protection of genetic information, and global trade. These methods are widespread in developed nations.

<span class="mw-page-title-main">Azoxystrobin</span> Chemical compound

Azoxystrobin is a broad spectrum systemic fungicide widely used in agriculture to protect crops from fungal diseases. It was first marketed in 1996 using the brand name Amistar and by 1999 it had been registered in 48 countries on more than 50 crops. In the year 2000 it was announced that it had been granted UK Millennium product status.

<span class="mw-page-title-main">Cyhalothrin</span> Synthetic pyrethroid used as insecticide

Cyhalothrin is the ISO common name for an organic compound that, in specific isomeric forms, is used as a pesticide. It is a pyrethroid, a class of synthetic insecticides that mimic the structure and properties of the naturally occurring insecticide pyrethrin which is present in the flowers of Chrysanthemum cinerariifolium. Pyrethroids such as cyhalothrin are often preferred as an active ingredient in agricultural insecticides because they are more cost-effective and longer acting than natural pyrethrins. λ-and γ-cyhalothrin are now used to control insects and spider mites in crops including cotton, cereals, potatoes and vegetables.

<span class="mw-page-title-main">Pesticide application</span> Delivery of pesticides

Pesticide application refers to the practical way in which pesticides are delivered to their biological targets. Public concern about the use of pesticides has highlighted the need to make this process as efficient as possible, in order to minimise their release into the environment and human exposure. The practice of pest management by the rational application of pesticides is supremely multi-disciplinary, combining many aspects of biology and chemistry with: agronomy, engineering, meteorology, socio-economics and public health, together with newer disciplines such as biotechnology and information science.

<span class="mw-page-title-main">Environmental impact of pesticides</span> Environmental effect

The environmental effects of pesticides describe the broad series of consequences of using pesticides. The unintended consequences of pesticides is one of the main drivers of the negative impact of modern industrial agriculture on the environment. Pesticides, because they are toxic chemicals meant to kill pest species, can affect non-target species, such as plants, animals and humans. Over 98% of sprayed insecticides and 95% of herbicides reach a destination other than their target species, because they are sprayed or spread across entire agricultural fields. Other agrochemicals, such as fertilizers, can also have negative effects on the environment.

The use of pesticides in Canada is regulated by the Pest Management Regulatory Agency, a division of Health Canada via the Pest Control Products Act. Pesticides are used predominantly by the agricultural sector. In 2016, 20% of reported pesticide sales were non-agricultural sector products, and just under 5% were domestic sector products.

This is an index of articles relating to pesticides.

<span class="mw-page-title-main">Saflufenacil</span> Chemical compound

Saflufenacil is the ISO common name for an organic compound of the pyrimidinedione chemical class used as an herbicide. It acts by inhibiting the enzyme protoporphyrinogen oxidase to control broadleaf weeds in crops including soybeans and corn.

<span class="mw-page-title-main">Mesotrione</span> Chemical compound used as an herbicide

Mesotrione is the ISO common name for an organic compound that is used as a selective herbicide, especially in maize. A synthetic inspired by the natural substance leptospermone, it inhibits the enzyme 4-hydroxyphenylpyruvate dioxygenase (HPPD) and is sold under brand names including Callisto and Tenacity. It was first marketed by Syngenta in 2001.

<span class="mw-page-title-main">Tebufenozide</span> Chemical compound

Tebufenozide is an insecticide that acts as a molting hormone. It is an agonist of the ecdysone receptor that causes premature molting in larvae. It is primarily used against caterpillar pests.

<span class="mw-page-title-main">Imazaquin</span> Chemical compound

Imazaquin is an imidazolinone herbicide, so named because it contains an imidazolinone core. This organic compound is used to control a broad spectrum of weed species. It is a colorless or white solid, although commercial samples can appear brown or tan.

Specialty chemicals are particular chemical products which provide a wide variety of effects on which many other industry sectors rely. Some of the categories of speciality chemicals are adhesives, agrichemicals, cleaning materials, colors, cosmetic additives, construction chemicals, elastomers, flavors, food additives, fragrances, industrial gases, lubricants, paints, polymers, surfactants, and textile auxiliaries. Other industrial sectors such as automotive, aerospace, food, cosmetics, agriculture, manufacturing, and textiles are highly dependent on such products.

Early twenty-first century pesticide research has focused on developing molecules that combine low use rates and that are more selective, safer, resistance-breaking and cost-effective. Obstacles include increasing pesticide resistance and an increasingly stringent regulatory environment.

References

  1. "Agrochemicals Handbook from C.H.I.P.S." C.H.I.P.S.
  2. "Agrochemicals and Security". University of Florida. Archived from the original on 2017-10-16. Retrieved 2008-12-14.
  3. "Agrochemicals: Types and their effects". worldofchemicals.com. February 2, 2018. Retrieved July 23, 2020.
  4. 1 2 Unsworth, John (10 May 2010). "History of Pesticide Use". International Union of Pure and Applied Chemistry.
  5. "Agrochemical". 2 May 2017.
  6. Carvalho, Fernando P. (2006). "Agriculture, pesticides, food security and food safety". Environmental Science & Policy. Elsevier BV. 9 (7–8): 685–692. doi:10.1016/j.envsci.2006.08.002. ISSN   1462-9011.
  7. Agropages.com Mar. 25, 2014 Top six agrochemical firms grew steady in 2013
  8. Statista.com/ July. 6, 2021 Agricultural chemicals market value worldwide in 2018 and 2019 with a forecast from 2020 to 2025