Chlorella vulgaris

Last updated

Chlorella vulgaris
Chlorella vulgaris NIES2170.jpg
Chlorella vulgaris on microscope view
Scientific classification OOjs UI icon edit-ltr.svg
Kingdom: Plantae
Division: Chlorophyta
Class: Trebouxiophyceae
Order: Chlorellales
Family: Chlorellaceae
Genus: Chlorella
Species:
C. vulgaris
Binomial name
Chlorella vulgaris
Varieties
Synonyms [1]
  • Chlorella vulgaris var. viridis Chodat
  • Chlorella ellipsoidea Gerneck
Chlorella vulgaris in endosymbiosis with the ciliate Ophrydium versatile Infuzorii Ophridium versatile.jpg
Chlorella vulgaris in endosymbiosis with the ciliate Ophrydium versatile

Chlorella vulgaris is a species of green microalga in the division Chlorophyta. [3] This unicellular alga was discovered in 1890 by Martinus Willem Beijerinck [4] as the first microalga with a well-defined nucleus. [3] It is the type species of the genus Chlorella . [5] It is found in freshwater and terrestrial habitats, and has a cosmopolitan distribution. [6]

Contents

Chlorella vulgaris has a number of potential applications in science, such as biofuel, livestock feed, and wastewater treatment. [3] Beginning in the 1990s, German scientists noticed the high protein content of C. vulgaris and began to consider it as a new food source. Japan is currently the largest consumer of Chlorella, [3] [7] both for nutritional and therapeutic purposes, [8] and it is used as a dietary supplement or protein-rich food additive in several countries worldwide. [9]

Description

C. vulgaris is a green eukaryotic microalga. The cells are 4–10 μm in diameter, and are spherical. The chloroplast (chromatophore) is pea-green in color and cup-shaped, with a single pyrenoid. [10]

Symbiosis

Chlorella vulgaris occurs as a symbiont in tissues of the freshwater flatworms Dalyellia viridis and Typhloplana viridata . [11]

Production

The world annual production of the various species of Chlorella was 2000 tonnes (dry weight) in 2009, with the main producers being Germany, Japan and Taiwan. [3] C. vulgaris is a candidate for commercial production due to its high resistance against adverse conditions and invading organisms. In addition, the production of the various organic macromolecules of interest (proteins, lipids, starch) differ depending on the technique used to create biomass and can be therefore targeted. [3] Under more hostile conditions, the biomass decreases, but lipids and starch contents increase. [12] Under nutrient and light-replete conditions, protein content increases along with the biomass. [13] Different growth techniques have been developed. Different modes of growth (autotrophic, heterotrophic, and mixotrophic) has been investigated for Chlorella vulgaris; autotrophic growth is favoured as it does not require provision of costly organic carbon and relies on inorganic carbon sources (CO2, carbonates) and light for photosynthesis. [14]

Chlorella sp. cultivated in digested and membrane-pretreated swine manure is capable of improving the growth medium performance of microalgae cultivations in terms of final biomass productivity, showing that algal growth depends on the turbidity of liquid digestate streams rather than on their nutrient availability. [15]

Uses

Bioremediation

Chlorella vulgaris has been the microalgae of choice for several bioremediation processes. Owing to its ability to remove a variety of pollutants such as inorganic nutrients (nitrate, nitrite, phosphate and ammonium), fertilizers, detergents, heavy metals, pesticides, pharmaceuticals and other emerging pollutants from wastewater and effluents, carbon dioxide and other gaseous pollutants from flue gases, besides having high growth rates and simple cultivation requirements, Chlorella vulgaris has emerged as a potential microorganism in bioremediation studies for mitigation of environmental pollution. [16]

Bioenergy

C. vulgaris is seen as a promising source of bioenergy. It may be a good alternative to biofuel crops, like soybean, corn or rapeseed, as it is more productive and does not compete with food production. [17] It can produce large amount of lipids, up to 20 times more than crops [18] that have a suitable profile for biodiesel production. [19] This microalgae also contains high amounts of starch, good for the production of bioethanol. [3] However, microalgal biofuels are far from competitive with fossil fuels, given their high production costs and controversial sustainability. [3] [20]

Food ingredient and dietary supplement

The protein content of C. vulgaris varies from 42 to 58% of its biomass dry weight. [21] [22] [23] [24] These proteins are considered as having a good nutritional quality compared to the standard profile for human nutrition of the World Health Organization and Food and Agriculture Organization, as the algae synthesizes amino acids. [3] The algae also contains lipids (5–40% of the dry mass), [8] [21] carbohydrates (12–55% dry weight), [25] [26] [27] and pigments including chlorophyll, reaching 1–2 % of the dry weight. [28] [29]

Containing dietary minerals and vitamins, [3] C. vulgaris is marketed as a dietary supplement, food additive, or food colorant. [30] [31] Extracted proteins have been investigated for manufacturing of emulsion and foams. [32] It is not widely incorporated in food products due to its dark green color and smell similar to that of fish. [33] As a dietary supplement, it may be sold as capsules, extracts, tablets or powder. [34] [35] Vitamin B12, specifically in the form of methylcobalamin, has been identified in Chlorella vulgaris. [36]

References

  1. "Chlorella vulgaris". NCBI taxonomy. Bethesda, MD: National Center for Biotechnology Information. Retrieved 5 December 2017. Other names: synonym: Chlorella vulgaris var. viridis Chodat includes: Chlorella vulgaris Beijerink IAM C-27 formerly Chlorella ellipsoidea Gerneck IAM C-27
  2. Duval B., Margulis L. (1995). "The microbial community of Ophrydium versatile colonies: endosymbionts, residents, and tenants". Symbiosis. 18: 181–210. PMID   11539474.
  3. 1 2 3 4 5 6 7 8 9 10 Safi, C., Zebib, B., Merah, O., Pontalier, P. Y., & Vaca-Garcia, C. (2014). "Morphology, composition, production, processing and applications of Chlorella vulgaris: A review" (PDF). Renewable and Sustainable Energy Reviews. 35: 265–278. Bibcode:2014RSERv..35..265S. doi:10.1016/j.rser.2014.04.007.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. Beijerinck, M. W. (1890). "Culturversuche mit Zoochlorellen, Lichenengonidien und anderen niederen Algen". Bot. Zeitung. 48: 781–785.
  5. Krienitz, Lothar; Huss, Volker A.R.; Bock, Christina (2015). "Chlorella: 125 years of the green survivalist". Trends in Plant Science. 20 (2): 67–69. Bibcode:2015TPS....20...67K. doi:10.1016/j.tplants.2014.11.005. PMID   25500553.
  6. Aigner, Siegfried; Glaser, Karin; Arc, Erwann; Holzinger, Andreas; Schletter, Michael; Karsten, Ulf; Kranner, Ilse (2020). "Adaptation to Aquatic and Terrestrial Environments in Chlorella vulgaris (Chlorophyta)". Frontiers in Microbiology. 11. doi: 10.3389/fmicb.2020.585836 . PMC   7593248 . PMID   33178169.
  7. Kitada, K., Machmudah, S., Sasaki, M., Goto, M., Nakashima, Y., Kumamoto, S., & Hasegawa, T. (2009). "Supercritical CO2 extraction of pigment components with pharmaceutical importance from Chlorella vulgaris". Journal of Chemical Technology and Biotechnology. 84 (5): 657–661. Bibcode:2009JCTB...84..657K. doi:10.1002/jctb.2096.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. 1 2 Freitas, Hércules Rezende (2017-08-25). "Chlorella vulgaris as a Source of Essential Fatty Acids and Micronutrients: A Brief Commentary" . The Open Plant Science Journal. 10 (1): 92–99. doi: 10.2174/1874294701710010092 (inactive 11 July 2025).{{cite journal}}: CS1 maint: DOI inactive as of July 2025 (link)
  9. Wang, Chiao-An; Onyeaka, Helen; Miri, Taghi; Soltani, Fakhteh (2024). "Chlorella vulgaris as a food substitute: Applications and benefits in the food industry". Journal of Food Science. 89 (12): 8231–8247. doi:10.1111/1750-3841.17529. PMC   11673457 . PMID   39556490.
  10. Shihira, I.; Krauss, R.W. (1965). Chlorella. Physiology and taxonomy of forty-one isolates. Maryland: University of Maryland, College Park. pp. 1–97.
  11. Young, J. O. (2001). Keys to the freshwater microturbellarians of Britain and Ireland. Ambleside: Freshwater Biological Association. p. 92.
  12. Přibyl, P., Cepak, V., & Zachleder, V. (2012). "Production of lipids in 10 strains of Chlorella and Parachlorella, and enhanced lipid productivity in Chlorella vulgaris". Applied Microbiology and Biotechnology. 94 (2): 549–61. doi:10.1007/s00253-012-3915-5. PMID   22361856. S2CID   16442599.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  13. Yuvraj; Ambarish Sharan Vidyarthi; Jeeoot Singh (2016). "Enhancement of Chlorella vulgaris cell density: Shake flask and bench-top photobioreactor studies to identify and control limiting factors" . Korean Journal of Chemical Engineering. 33 (8): 2396–2405. doi:10.1007/s11814-016-0087-5. S2CID   99110136.
  14. Yuvraj; Padmini Padmanabhan (2017). "Technical insight on the requirements for CO2-saturated growth of microalgae in photobioreactors". 3 Biotech. 07 (2): 119. doi:10.1007/s13205-017-0778-6. PMC   5451369 . PMID   28567633.
  15. Ledda, Claudio; Ida, Antonio; Allemand, Donatella; Mariani, Paola (November 1, 2015). "Production of wild Chlorella sp. cultivated in digested and membrane-pretreated swine manure derived from a full-scale operation plant" (PDF). Algal Research. 12: Abstract, 70. Bibcode:2015AlgRe..12...68L. doi:10.1016/j.algal.2015.08.010. ISSN   2211-9264. OCLC   5878756379. Archived (PDF) from the original on August 8, 2021.
  16. Yuvraj (2022). "Microalgal Bioremediation: A Clean and Sustainable Approach for Controlling Environmental Pollution". Innovations in Environmental Biotechnology. Vol. 1. Singapore: Springer Singapore. pp. 305–318. doi:10.1007/978-981-16-4445-0_13. ISBN   978-981-16-4445-0.
  17. Singh, A., Nigam, P. S., & Murphy, J. D. (2011). "Renewable fuels from algae: An answer to debatable land based fuels". Bioresource Technology. 102 (1): 10–16. Bibcode:2011BiTec.102...10S. doi:10.1016/j.biortech.2010.06.032. PMID   20615690.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  18. Demirbas, M. F. (2011). "Biofuels from algae for sustainable development". Applied Energy. 88 (10): 3473–3480. Bibcode:2011ApEn...88.3473D. doi:10.1016/j.apenergy.2011.01.059.
  19. Wang, K. G., Brown, R. C., Homsy, S., Martinez, L., & Sidhu, S. S. (2013). "Fast pyrolysis of microalgae remnants in a fluidized bed reactor for bio-oil and biochar production". Bioresource Technology. 127: 494–499. Bibcode:2013BiTec.127..494W. doi:10.1016/j.biortech.2012.08.016. PMID   23069615.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  20. Lavars, Nick (2019-09-19). "Algae-fueled bioreactor soaks up CO2 400x more effectively than trees". New Atlas. Retrieved 2019-10-04.
  21. 1 2 Becker, E. W. (1994). Microalgae: biotechnology and microbiology. Vol. 10. Cambridge University Press.
  22. Morris, H. J., Almarales, A., Carrillo, O., & Bermúdez, R. C. (2008). "Utilisation of Chlorella vulgaris cell biomass for the production of enzymatic protein hydrolysates". Bioresource Technology. 99 (16): 7723–7729. Bibcode:2008BiTec..99.7723M. doi:10.1016/j.biortech.2008.01.080. PMID   18359627.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  23. Servaites, J. C., Faeth, J. L., & Sidhu, S. S. (2012). "A dye binding method for measurement of total protein in microalgae". Analytical Biochemistry. 421 (1): 75–80. doi:10.1016/j.ab.2011.10.047. PMID   22138185.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  24. Seyfabadi, J., Ramezanpour, Z., & Khoeyi, Z. A. (2011). "Protein, fatty acid, and pigment content of Chlorella vulgaris under different light regimes". Journal of Applied Phycology. 23 (4): 721–726. Bibcode:2011JAPco..23..721S. doi:10.1007/s10811-010-9569-8. S2CID   31981379.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  25. Brányiková, I., Maršálková, B., Doucha, J., Brányik, T., Bišová, K., Zachleder, V., & Vítová, M. (2011). "Microalgae—novel highly efficient starch producers". Biotechnology and Bioengineering. 108 (4): 766–776. doi:10.1002/bit.23016. PMID   21404251. S2CID   12940180.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  26. Choix, F. J., de-Bashan, L. E., & Bashan, Y. (2012). "Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: II. Heterotrophic conditions". Enzyme and Microbial Technology. 51 (5): 300–309. doi:10.1016/j.enzmictec.2012.07.013. PMID   22975128.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  27. Fernandes, B., Dragone, G., Abreu, A. P., Geada, P., Teixeira, J., & Vicente, A. (2012). "Starch determination in Chlorella vulgaris—a comparison between acid and enzymatic methods". Journal of Applied Phycology. 24 (5): 1203–1208. Bibcode:2012JAPco..24.1203F. CiteSeerX   10.1.1.1024.1758 . doi:10.1007/s10811-011-9761-5. S2CID   10404393.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  28. de-Bashan, L. E., Bashan, Y., Moreno, M., Lebsky, V. K., & Bustillos, J. J. (2002). "Increased pigment and lipid content, lipid variety, and cell and population size of the microalgae Chlorella spp. when co-immobilized in alginate beads with the microalgae-growth-promoting bacterium Azospirillum brasilense". Canadian Journal of Microbiology. 48 (6): 514–521. doi:10.1139/w02-051. PMID   12166678.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  29. Gonzalez, L. E., & Bashan, Y. (2000). "Increased growth of the microalga Chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant-growth-promoting bacterium Azospirillum brasilense". Applied and Environmental Microbiology. 66 (4): 1527–1531. Bibcode:2000ApEnM..66.1527G. doi:10.1128/aem.66.4.1527-1531.2000. PMC   92018 . PMID   10742237.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  30. Fradique, M., Batista, A. P., Nunes, M. C., Gouveia, L., Bandarra, N. M., & Raymundo, A. (2010). "Incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products. Part 1: Preparation and evaluation". Journal of the Science of Food and Agriculture. 90 (10): 1656–1664. Bibcode:2010JSFA...90.1656F. doi:10.1002/jsfa.3999. PMID   20564448.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  31. Li, H.-B., Jiang, Y., & Chen, F. (2002). "Isolation and purification of lutein from the microalga Chlorella vulgaris by extraction after saponification". Journal of Agricultural and Food Chemistry. 50 (5): 1070–1072. Bibcode:2002JAFC...50.1070L. doi:10.1021/jf010220b. PMID   11853482.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  32. Bertsch, Pascal; Böcker, Lukas; Mathys, Alexander; Fischer, Peter (February 2021). "Proteins from microalgae for the stabilization of fluid interfaces, emulsions, and foams". Trends in Food Science & Technology. 108: 326–342. doi: 10.1016/j.tifs.2020.12.014 . hdl: 20.500.11850/458592 .
  33. Becker, E. (2007). "Micro-algae as a source of protein". Biotechnology Advances. 25 (2): 207–210. doi:10.1016/j.biotechadv.2006.11.002. PMID   17196357.
  34. Liang, S., Liu, X., Chen, F., & Chen, Z. (2004). Ang, Put O (ed.). Current microalgal health food R & D activities in China. Asian Pacific Phycology in the 21st Century: Prospects and Challenges. pp. 45–48. doi:10.1007/978-94-007-0944-7. ISBN   978-94-007-0944-7. S2CID   12049767.{{cite book}}: CS1 maint: multiple names: authors list (link) CS1 maint: publisher location (link)
  35. Yamaguchi, K. (1996). "Recent advances in microalgal bioscience in Japan, with special reference to utilization of biomass and metabolites: a review". Journal of Applied Phycology. 8 (6): 487–502. Bibcode:1996JAPco...8..487Y. doi:10.1007/BF02186327. S2CID   21226338.
  36. Kumudha A, Selvakumar S, Dilshad P, Vaidyanathan G, Thakur MS, Sarada R. (2015). "Methylcobalamin--a form of vitamin B12 identified and characterised in Chlorella vulgaris". Journal of Food Chemistry. 170: 316–320. doi:10.1016/j.foodchem.2014.08.035. PMID   25306351.{{cite journal}}: CS1 maint: multiple names: authors list (link)