Thomas S. Ray

Last updated
Thomas S. Ray
TomSRay20110103.jpg
Ray in 2011
Born (1954-09-21) September 21, 1954 (age 69)
Nationality American
Alma mater Florida State University
Harvard University
Occupation(s) Evolutionary biologist, computer scientist
Known for Tierra, skototropism

Thomas S. Ray is an evolutionary biologist known for his research in tropical biology, digital evolution, and the human mind.

Contents

Early life and education

Ray earned his undergraduate degrees in biology and chemistry at Florida State University. He then proceeded to Harvard University, where he received his master's and Doctorate in Biology, specializing in plant behavior.

Career

Ray began his career as a member of the Society of Fellows at the University of Michigan at Ann Arbor and a member of the faculty of the University of Delaware's School of Life and Health Sciences. In 1993 he received a joint appointment in Computer and Information Science at U. Delaware while also being appointed to the External Faculty of the Santa Fe Institute.

In August 1998 he joined the Advanced Telecommunications Research Institute International's Human Information Processing Research Labs Evolutionary Systems Department as an invited researcher before eventually becoming a Professor in the Zoology (later Biology) & Computer Science departments at the University of Oklahoma.

Throughout his career he has studied different disciplines:

Tropical biology

From 1974 to 1989, Ray worked as a tropical biologist, studying the evolution, ecology, and natural history of various organisms inhabiting rain forests. His research primarily focused on the foraging behavior of vines in the Araceae family, but also included studies on ants, butterflies, and beetles . Ray conducted most of his field work in Costa Rica, where he established the Finca El Bejuco biological station in the northern lowland rain forests. He continues to own and operate this station and remains deeply involved in rain forest conservation in Costa Rica.

Artificial life and digital evolution

In 1990, Ray turned his attention to artificial life, exploring the outcomes of evolution by natural selection within digital computation . This work began with the creation of Tierra, a system in which self-replicating machine code programs evolve by natural selection. His work in this field has attracted significant media attention . In 2000, he implemented a new system called Virtual Life, building upon Evolved Virtual Creatures, a concept originally created by Karl Sims. In 2003, Ray collaborated with Ivan Tanev to further develop the Virtual Life project.

Architecture of the Human Mind

The research conducted by T.S. Ray has substantially contributed to our understanding of the human mind, consciousness, and the effects of psychoactive substances. He has hypothesized that the human mind is composed of "mental organs," which are populations of neurons bearing a specific G-protein-coupled receptor (GPCR) (and other metabotropic receptors) on their surface. These mental organs are thought to provide a direct link between mental properties—such as joy, consciousness, and reason—and the genes and regulatory elements associated with GPCR. Importantly, because there is heritable genetic variation associated with these mental organs, they can evolve over time.

Ray's studies on psychedelic drugs have further elaborated on this theory. His research posits that the diverse effects of these substances can be attributed to their interactions with different mental organs. The breadth of these interactions is significant, with psychoactive substances showing activity across a wide range of receptor sites. This interaction pattern supports the idea that the diversity in effects of these drugs is likely due to their diverse interactions with different mental organs, emphasizing the roles of dozens of different receptors.

The theory also offers a fresh perspective on the effects of MDMA, a drug that is known for its unique entactogenic mental state. Traditional views suggest that MDMA's effects are primarily due to neurotransmitter release, especially serotonin. However, Ray proposes an alternative hypothesis: the distinctive mental state caused by MDMA arises from the simultaneous direct activation of imidazoline-1 (I1) and serotonin-2 (5-HT2) receptors, which correspond to specific mental organs. According to this theory, a mental organ can only enter consciousness if two things occur: the mental organ is directly activated at its defining receptor, and 5-HT2 is simultaneously activated.

To test these hypotheses, Ray has proposed the "primer/probe" method . A "primer" is a drug that selectively activates certain serotonin receptors, while a "probe" is a drug that activates a non-serotonin receptor corresponding to the mental organ that researchers want to bring into consciousness for study. By using both a primer and a probe, it is possible to load a mental organ into consciousness and thus study its role in the mind.

Taken together, this body of research provides an innovative framework for understanding the human mind, consciousness, and the effects of psychoactive substances, suggesting a direct linkage between mental properties, neuronal structures, and genetic components .

Mindstate Design Labs

Currently, Ray is the scientific founder of Mindstate Design Labs, where his research revolves around psychoactive drugs as tools for probing the chemical architecture of the human mind. He proposes the existence of "mental organs", defined as populations of neurons bearing specific neurotransmitter receptors on their surface. Ray's work aims to use the diversity of mental organs to discover, design, and create diverse mental states.

Academic appointments

Over the years, Ray has held several academic positions. In 1981, he joined the faculty of the University of Delaware, School of Life and Health Sciences. In 1993, he received a joint appointment in Computer and Information Science at the University of Delaware and was appointed to the External Faculty of the Santa Fe Institute. Later that year, he joined the Evolutionary Systems Department at ATR (Advanced Telecommunications Research Institute International Human Information Processing Research Labs in Japan as an invited researcher. In August 1998, he became a Professor of Zoology (later Biology) at the University of Oklahoma, with an adjunct appointment as a Professor of Computer Science.

Tierra Software

Tierra is a computer program developed by Dr. Thomas S. Ray in the early 1990s. This innovative software allowed computer programs to compete for time (central processing unit (CPU) time) and space (access to main memory). Within the Tierra virtual machine, these computer programs are evolvable and capable of self-replicating and recombining. The virtual machine of Tierra is written in C and operates on a custom machine instruction set designed to facilitate code changes and reordering, featuring elements such as "jump to template" as opposed to the relative or absolute jumps common to most instruction sets.

The Tierra model has been utilized to explore the fundamental processes of evolutionary and ecological dynamics in a computational environment. It facilitates the investigation of processes such as the dynamics of punctuated equilibrium, host-parasite co-evolution, and density-dependent natural selection. Unlike more conventional models of evolutionary computation, such as genetic algorithms, Tierra does not have an explicit, or exogenous, fitness function built into the model. The fitness function in Tierra is endogenous, with survival and death being the core factors determining the "fitness" of a program, resulting in an instance of natural selection.

According to Ray and other researchers, this setup might allow for more "open-ended" evolution, in which the feedback dynamics between evolutionary and ecological processes can change over time. However, this claim is yet to be realized. Like other digital evolution systems, Tierra eventually reaches a point where novelty ceases to be created, and the system at large either begins looping or ceases to 'evolve'. The challenge of implementing true open-ended evolution in an artificial system is an ongoing question in the field of artificial life.

Researchers Mark Bedau and Norman Packard developed a statistical method of classifying evolutionary systems. In 1997, they applied these statistics to Evita, an artificial life model like Tierra and Avida, concluding that Tierra-like systems do not exhibit the open-ended evolutionary signatures of naturally evolving systems. Similarly, Russell K. Standish measured the informational complexity of 'organisms' within Tierra and did not observe complex growth in their evolution.

Personal life

Ray was born in Norman Oklahoma. He has a daughter named Ariel Ivy Ray who was born in 1993.

Sample of Publications

Strong, D. R. and T. S. Ray. 1975. Host tree location behavior of a tropical vine (Monstera gigantea) by skototropism. Science, 190: 804–06.

Ray, T. S., and C. C. Andrews. 1980. Antbutterflies: Butterflies that follow army ants to feed on antbird droppings. Science 210: 1147–1148.

Ray, T. S. 1980. Syngonium oduberi (Araceae): A new species from the Osa Peninsula of Costa Rica. Aroideana 3(4): 128–129.

Ray, T. S. 1983. Monstera tenuis. In D. Janzen [ed.], Costa Rican natural history, 278–80. University of Chicago Press.

Ray, T. S. 1985. The host plant, Erythroxylum (Erythroxylaceae), of Agrias (Nymphalidae). J. Lep. Soc. 39(4):266–267.

Ray, T. S. 1988. Diversification of growth habits in the Araceae. Amer. J. Bot.76(Suppl.): 276.

Ray, T. S. 1990. Metamorphosis in the Araceae. Amer. J. Bot. 77(12): 1599–1609.

Ray, T. S. 1991. Evolution and optimization of digital organisms. In: Billingsley K. R., E. Derohanes, H. Brown, III [eds.], Scientific Excellence in Supercomputing: The IBM 1990 Contest Prize Papers, Athens, GA, 30602: The Baldwin Press, The University of Georgia. Publication date: December 1991, Pp. 489–531.

Ray, T. S. 1991. An approach to the synthesis of life. In : Langton, C., C. Taylor, J. D. Farmer, & S. Rasmussen [eds], Artificial Life II, Santa Fe Institute Studies in the Sciences of Complexity, vol. XI, 371–408. Redwood City, CA: Addison-Wesley. ,

Ray, T. S. 1992. Foraging behaviour in tropical herbaceous climbers (Araceae). Journal of Ecology 80: 189–203.

Ray, T. S. 1994. An evolutionary approach to synthetic biology: Zen and the art of creating life. Artificial Life 1(1/2): 195–226. Reprinted In: Langton, C. G. [ed.], Artificial Life, an overview. The MIT Press, 1995.

Ray, T. S. 1994. Evolution, complexity, entropy, and artificial reality. Physica D 75: 239–263.

Thearling, Kurt, and Thomas S. Ray. 1997. “Evolving Parallel Computation,” Complex Systems, 10(3):229–237. (June 1996)

Ray, T. S. 1998. Selecting Naturally for Differentiation: preliminary evolutionary results. Complexity, 3(5): 25–33. John Wiley & Sons, Inc.

Ray, T. S. 2001. Aesthetically Evolved Virtual Pets. Leonardo 34(4): 313–316.

Ray, T. S. 2002. Kurzweil’s Turing Fallacy. In: Jay Wesley Richards [ed.]. “Are We Spiritual Machines?: Ray Kurzweil vs. the Critics of Strong AI”, with George Gilder, Ray Kurzweil, William Dembski, John Searle, Michael Denton and Thomas Ray. Discovery Institute, Seattle. Pp. 116–127.

Ray, T.S. 2010. Psychedelics and the Human Receptorome. PLoS ONE. , February 2, 2010.

Ray, T. S. 2012. Mental Organs and the Origins of Mind. In: L. Swan (Ed) Origins of Mind, pp. 301–326. New York / Heidelberg: Springer.

Ray, T. S. 2015. Constructing the ecstasy of MDMA from its component mental organs: Proposing the primer/probe method. Medical Hypotheses / Elsevier, 87, 48 – 60.

Ray, T.S. 2017. Mental Organs and the Breadth and Depth of Consciousness. Transform Press. June 27, 2017.

Related Research Articles

<i>N</i>,<i>N</i>-Dimethyltryptamine Chemical compound

N,N-Dimethyltryptamine is a substituted tryptamine that occurs in many plants and animals, including humans, and which is both a derivative and a structural analog of tryptamine. DMT is used as a psychedelic drug and prepared by various cultures for ritual purposes as an entheogen.

Evolutionary psychology is a theoretical approach in psychology that examines cognition and behavior from a modern evolutionary perspective. It seeks to identify human psychological adaptations with regards to the ancestral problems they evolved to solve. In this framework, psychological traits and mechanisms are either functional products of natural and sexual selection or non-adaptive by-products of other adaptive traits.

<span class="mw-page-title-main">MDMA</span> Psychoactive drug, often called ecstasy

3,4-Methyl​enedioxy​methamphetamine (MDMA), commonly known as ecstasy, and molly or mandy, is a potent empathogen–entactogen with stimulant and minor psychedelic properties. Investigational indications include as an adjunct to psychotherapy in the treatment of post-traumatic stress disorder (PTSD) and social anxiety in autism spectrum disorder. The purported pharmacological effects that may be prosocial include altered sensations, increased energy, empathy, and pleasure. When taken by mouth, effects begin in 30 to 45 minutes and last three to six hours.

<span class="mw-page-title-main">Recreational drug use</span> Use of drugs with the primary intention to alter the state of consciousness

Recreational drug use is the use of one or more psychoactive drugs to induce an altered state of consciousness, either for pleasure or for some other casual purpose or pastime. When a psychoactive drug enters the user's body, it induces an intoxicating effect. Recreational drugs are commonly divided into three categories: depressants, stimulants, and hallucinogens.

<span class="mw-page-title-main">Psychopharmacology</span> Study of the effects of psychoactive drugs

Psychopharmacology is the scientific study of the effects drugs have on mood, sensation, thinking, behavior, judgment and evaluation, and memory. It is distinguished from neuropsychopharmacology, which emphasizes the correlation between drug-induced changes in the functioning of cells in the nervous system and changes in consciousness and behavior.

<span class="mw-page-title-main">Psychedelic drug</span> Hallucinogenic class of psychoactive drug

Psychedelics are a subclass of hallucinogenic drugs whose primary effect is to trigger non-ordinary mental states and an apparent expansion of consciousness. Also referred to as classic hallucinogens or serotonergic hallucinogens, the term psychedelic is sometimes used more broadly to include various types of hallucinogens, such as those which are atypical or adjacent to psychedelia like salvia and MDMA, respectively. This article makes use of the narrower classical definition of psychedelics. Classic psychedelics generally cause specific psychological, visual, and auditory changes, and oftentimes a substantially altered state of consciousness. They have had the largest influence on science and culture, and include mescaline, LSD, psilocybin, and DMT.

An altered state of consciousness (ASC), also called an altered state of mind or mind alteration, is any condition which is significantly different from a normal waking state. By 1892, the expression was in use in relation to hypnosis, though there is an ongoing debate as to whether hypnosis is to be identified as an ASC according to its modern definition. The next retrievable instance, by Max Mailhouse from his 1904 presentation to conference, however, is unequivocally identified as such, as it was in relation to epilepsy, and is still used today. In academia, the expression was used as early as 1966 by Arnold M. Ludwig and brought into common usage from 1969 by Charles Tart. It describes induced changes in one's mental state, almost always temporary. A synonymous phrase is "altered state of awareness".

<span class="mw-page-title-main">Tierra (computer simulation)</span> Computer simulation of life by the ecologist Thomas S. Ray

Tierra is a computer simulation developed by ecologist Thomas S. Ray in the early 1990s in which computer programs compete for time and space. In this context, the computer programs in Tierra are considered to be evolvable and can mutate, self-replicate and recombine. Tierra's virtual machine is written in C. It operates on a custom instruction set designed to facilitate code changes and reordering, including features such as jump to template.

A digital organism is a self-replicating computer program that mutates and evolves. Digital organisms are used as a tool to study the dynamics of Darwinian evolution, and to test or verify specific hypotheses or mathematical models of evolution. The study of digital organisms is closely related to the area of artificial life.

<span class="mw-page-title-main">Avida (software)</span> Artificial life software platform

Avida is an artificial life software platform to study the evolutionary biology of self-replicating and evolving computer programs. Avida is under active development by Charles Ofria's Digital Evolution Lab at Michigan State University; the first version of Avida was designed in 1993 by Ofria, Chris Adami and C. Titus Brown at Caltech, and has been fully reengineered by Ofria on multiple occasions since then. The software was originally inspired by the Tierra system.

<span class="mw-page-title-main">3,4-Methylenedioxyamphetamine</span> Empathogen-entactogen, psychostimulant, and psychedelic drug of the amphetamine family

3,4-Methylenedioxyamphetamine is an empathogen-entactogen, psychostimulant, and psychedelic drug of the amphetamine family that is encountered mainly as a recreational drug. In its pharmacology, MDA is a serotonin–norepinephrine–dopamine releasing agent (SNDRA). In most countries, the drug is a controlled substance and its possession and sale are illegal.

<span class="mw-page-title-main">Sympathomimetic drug</span> Substance that mimics effects of catecholamines

Sympathomimetic drugs are stimulant compounds which mimic the effects of endogenous agonists of the sympathetic nervous system. Examples of sympathomimetic effects include increases in heart rate, force of cardiac contraction, and blood pressure. The primary endogenous agonists of the sympathetic nervous system are the catecholamines, which function as both neurotransmitters and hormones. Sympathomimetic drugs are used to treat cardiac arrest and low blood pressure, or even delay premature labor, among other things.

Neuropsychopharmacology, an interdisciplinary science related to psychopharmacology and fundamental neuroscience, is the study of the neural mechanisms that drugs act upon to influence behavior. It entails research of mechanisms of neuropathology, pharmacodynamics, psychiatric illness, and states of consciousness. These studies are instigated at the detailed level involving neurotransmission/receptor activity, bio-chemical processes, and neural circuitry. Neuropsychopharmacology supersedes psychopharmacology in the areas of "how" and "why", and additionally addresses other issues of brain function. Accordingly, the clinical aspect of the field includes psychiatric (psychoactive) as well as neurologic (non-psychoactive) pharmacology-based treatments. Developments in neuropsychopharmacology may directly impact the studies of anxiety disorders, affective disorders, psychotic disorders, degenerative disorders, eating behavior, and sleep behavior.

<i>meta</i>-Chlorophenylpiperazine Stimulant

meta-Chlorophenylpiperazine (mCPP) is a psychoactive drug of the phenylpiperazine class. It was initially developed in the late-1970s and used in scientific research before being sold as a designer drug in the mid-2000s. It has been detected in pills touted as legal alternatives to illicit stimulants in New Zealand and pills sold as "ecstasy" in Europe and the United States.

5-HT<sub>5A</sub> receptor Protein-coding gene in the species Homo sapiens

5-Hydroxytryptamine (serotonin) receptor 5A, also known as HTR5A, is a protein that in humans is encoded by the HTR5A gene. Agonists and antagonists for 5-HT receptors, as well as serotonin uptake inhibitors, present promnesic (memory-promoting) and/or anti-amnesic effects under different conditions, and 5-HT receptors are also associated with neural changes.

<span class="mw-page-title-main">UWA-101</span> Chemical compound

UWA-101 is a phenethylamine derivative researched as a potential treatment for Parkinson's disease. Its chemical structure is very similar to that of the illegal drug MDMA, the only difference being the replacement of the α-methyl group with an α-cyclopropyl group. MDMA has been found in animal studies and reported in unauthorised human self-experiments to be effective in the short-term relief of side-effects of Parkinson's disease therapy, most notably levodopa-induced dyskinesia. However the illegal status of MDMA and concerns about its potential for recreational use, neurotoxicity and potentially dangerous side effects mean that it is unlikely to be investigated for medical use in this application, and so alternative analogues were investigated.

<span class="mw-page-title-main">Artificial life</span> Field of study

Artificial life is a field of study wherein researchers examine systems related to natural life, its processes, and its evolution, through the use of simulations with computer models, robotics, and biochemistry. The discipline was named by Christopher Langton, an American theoretical biologist, in 1986. In 1987 Langton organized the first conference on the field, in Los Alamos, New Mexico. There are three main kinds of alife, named for their approaches: soft, from software; hard, from hardware; and wet, from biochemistry. Artificial life researchers study traditional biology by trying to recreate aspects of biological phenomena.

Evolutionary models of drug use seek to explain human drug usage from the perspective of evolutionary fitness. Plants for instance, may provide fitness benefits by relieving pain. Proponents of this model of drug use suggest that the consumption of pharmacological substances for medicinal purposes evolved in the backdrop of human-plant coevolution as a means of self-medication. Humans thus learned to ignore the cues of plant toxicity because ingesting the bioactive compounds of plants in small amounts was therapeutic.

Bryan L. Roth is the Michael Hooker Distinguished Professor of Protein Therapeutics and Translational Proteomics, UNC School of Medicine. He is recognized for his discoveries and inventions in the general areas of molecular pharmacology, GPCR structure, and function and synthetic neurobiology. He is a member of the American Academy of Arts and Sciences (AAAS) and the National Academy of Medicine (NAM)

References