Part of a series on the |
Evolutionary algorithm |
---|
Genetic algorithm (GA) |
Genetic programming (GP) |
Differential evolution |
Evolution strategy |
Evolutionary programming |
Related topics |
A fitness function is a particular type of objective or cost function that is used to summarize, as a single figure of merit, how close a given candidate solution is to achieving the set aims. It is an important component of evolutionary algorithms (EA), such as genetic programming, evolution strategies or genetic algorithms. An EA is a metaheuristic that reproduces the basic principles of biological evolution as a computer algorithm in order to solve challenging optimization or planning tasks, at least approximately. For this purpose, many candidate solutions are generated, which are evaluated using a fitness function in order to guide the evolutionary development towards the desired goal. [1] Similar quality functions are also used in other metaheuristics, such as ant colony optimization or particle swarm optimization.
In the field of EAs, each candidate solution, also called an individual, is commonly represented as a string of numbers (referred to as a chromosome). After each round of testing or simulation the idea is to delete the n worst individuals, and to breed n new ones from the best solutions. Each individual must therefore to be assigned a quality number indicating how close it has come to the overall specification, and this is generated by applying the fitness function to the test or simulation results obtained from that candidate solution. [2]
Two main classes of fitness functions exist: one where the fitness function does not change, as in optimizing a fixed function or testing with a fixed set of test cases; and one where the fitness function is mutable, as in niche differentiation or co-evolving the set of test cases. [3] [4] Another way of looking at fitness functions is in terms of a fitness landscape, which shows the fitness for each possible chromosome. In the following, it is assumed that the fitness is determined based on an evaluation that remains unchanged during an optimization run.
A fitness function does not necessarily have to be able to calculate an absolute value, as it is sometimes sufficient to compare candidates in order to select the better one. A relative indication of fitness (candidate a is better than b) is sufficient in some cases, [5] such as tournament selection or Pareto optimization.
The quality of the evaluation and calculation of a fitness function is fundamental to the success of an EA optimisation. It implements Darwin's principle of "survival of the fittest". Without fitness-based selection mechanisms for mate selection and offspring acceptance, EA search would be blind and hardly distinguishable from the Monte Carlo method. When setting up a fitness function, one must always be aware that it is about more than just describing the desired target state. Rather, the evolutionary search on the way to the optimum should also be supported as much as possible (see also section on auxiliary objectives), if and insofar as this is not already done by the fitness function alone. If the fitness function is designed badly, the algorithm will either converge on an inappropriate solution, or will have difficulty converging at all.
Definition of the fitness function is not straightforward in many cases and often is performed iteratively if the fittest solutions produced by an EA is not what is desired. Interactive genetic algorithms address this difficulty by outsourcing evaluation to external agents which are normally humans.
The fitness function should not only correlate closely with the designer's goal, but it also should be computationally efficient. Speed of execution is very important, as a typical evolutionary algorithm must be iterated many times in order to produce a usable result for a non-trivial problem.
Fitness approximation [6] [7] may be appropriate, especially in the following cases:
Alternatively or also in addition to the fitness approximation, the fitness calculations can also be distributed to a parallel computer in order to reduce the execution times. Depending on the population model of the EA used, both the EA itself and the fitness calculations of all offspring of one generation can be executed in parallel. [9] [10] [11]
Practical applications usually aim at optimizing multiple and at least partially conflicting objectives. Two fundamentally different approaches are often used for this purpose, Pareto optimization and optimization based on fitness calculated using the weighted sum. [12]
When optimizing with the weighted sum, the single values of the objectives are first normalized so that they can be compared. This can be done with the help of costs or by specifying target values and determining the current value as the degree of fulfillment. Costs or degrees of fulfillment can then be compared with each other and, if required, can also be mapped to a uniform fitness scale. Without loss of generality, fitness is assumed to represent a value to be maximized. Each objective is assigned a weight in the form of a percentage value so that the overall raw fitness can be calculated as a weighted sum:
A violation of restrictions can be included in the fitness determined in this way in the form of penalty functions. For this purpose, a function can be defined for each restriction which returns a value between and depending on the degree of violation, with the result being if there is no violation. The previously determined raw fitness is multiplied by the penalty function(s) and the result is then the final fitness : [13]
This approach is simple and has the advantage of being able to combine any number of objectives and restrictions. The disadvantage is that different objectives can compensate each other and that the weights have to be defined before the optimization. This means that the compromise lines must be defined before optimization, which is why optimization with the weighted sum is also referred to as the a priori method. [12] In addition, certain solutions may not be obtained, see the section on the comparison of both types of optimization .
A solution is called Pareto-optimal if the improvement of one objective is only possible with a deterioration of at least one other objective. The set of all Pareto-optimal solutions, also called Pareto set, represents the set of all optimal compromises between the objectives. The figure below on the right shows an example of the Pareto set of two objectives and to be maximized. The elements of the set form the Pareto front (green line). From this set, a human decision maker must subsequently select the desired compromise solution. [12] Constraints are included in Pareto optimization in that solutions without constraint violations are per se better than those with violations. If two solutions to be compared each have constraint violations, the respective extent of the violations decides. [14]
It was recognized early on that EAs with their simultaneously considered solution set are well suited to finding solutions in one run that cover the Pareto front sufficiently well. [14] [15] They are therefore well suited as a-posteriori methods for multi-objective optimization, in which the final decision is made by a human decision maker after optimization and determination of the Pareto front. [12] Besides the SPEA2, [16] the NSGA-II [17] and NSGA-III [18] [19] have established themselves as standard methods.
The advantage of Pareto optimization is that, in contrast to the weighted sum, it provides all alternatives that are equivalent in terms of the objectives as an overall solution. The disadvantage is that a visualization of the alternatives becomes problematic or even impossible from four objectives on. Furthermore, the effort increases exponentially with the number of objectives. [13] If there are more than three or four objectives, some have to be combined using the weighted sum or other aggregation methods. [12]
With the help of the weighted sum, the total Pareto front can be obtained by a suitable choice of weights, provided that it is convex. [20] This is illustrated by the adjacent picture on the left. The point on the green Pareto front is reached by the weights and , provided that the EA converges to the optimum. The direction with the largest fitness gain in the solution set is shown by the drawn arrows.
In case of a non-convex front, however, non-convex front sections are not reachable by the weighted sum. In the adjacent image on the right, this is the section between points and . This can be remedied to a limited extent by using an extension of the weighted sum, the cascaded weighted sum. [13]
Comparing both assessment approaches, the use of Pareto optimization is certainly advantageous when little is known about the possible solutions of a task and when the number of optimization objectives can be narrowed down to three, at most four. However, in the case of repeated optimization of variations of one and the same task, the desired lines of compromise are usually known and the effort to determine the entire Pareto front is no longer justified. This is also true when no human decision is desired or possible after optimization, such as in automated decision processes. [13]
In addition to the primary objectives resulting from the task itself, it may be necessary to include auxiliary objectives in the assessment to support the achievement of one or more primary objectives. An example of a scheduling task is used for illustration purposes. The optimization goals include not only a general fast processing of all orders but also the compliance with a latest completion time. The latter is especially necessary for the scheduling of rush orders. The second goal is not achieved by the exemplary initial schedule, as shown in the adjacent figure. A following mutation does not change this, but schedules the work step d earlier, which is a necessary intermediate step for an earlier start of the last work step e of the order. As long as only the latest completion time is evaluated, however, the fitness of the mutated schedule remains unchanged, even though it represents a relevant step towards the objective of a timely completion of the order. This can be remedied, for example, by an additional evaluation of the delay of work steps. The new objective is an auxiliary one, since it was introduced in addition to the actual optimization objectives to support their achievement. A more detailed description of this approach and another example can be found in. [21]
Evolutionary algorithms (EA) reproduce essential elements of the biological evolution in a computer algorithm in order to solve “difficult” problems, at least approximately, for which no exact or satisfactory solution methods are known. They belong to the class of metaheuristics and are a subset of population based bio-inspired algorithms and evolutionary computation, which itself are part of the field of computational intelligence. The mechanisms of biological evolution that an EA mainly imitates are reproduction, mutation, recombination and selection. Candidate solutions to the optimization problem play the role of individuals in a population, and the fitness function determines the quality of the solutions (see also loss function). Evolution of the population then takes place after the repeated application of the above operators.
Evolutionary computation from computer science is a family of algorithms for global optimization inspired by biological evolution, and the subfield of artificial intelligence and soft computing studying these algorithms. In technical terms, they are a family of population-based trial and error problem solvers with a metaheuristic or stochastic optimization character.
In computational science, particle swarm optimization (PSO) is a computational method that optimizes a problem by iteratively trying to improve a candidate solution with regard to a given measure of quality. It solves a problem by having a population of candidate solutions, here dubbed particles, and moving these particles around in the search-space according to simple mathematical formulae over the particle's position and velocity. Each particle's movement is influenced by its local best known position, but is also guided toward the best known positions in the search-space, which are updated as better positions are found by other particles. This is expected to move the swarm toward the best solutions.
Crossover in evolutionary algorithms and evolutionary computation, also called recombination, is a genetic operator used to combine the genetic information of two parents to generate new offspring. It is one way to stochastically generate new solutions from an existing population, and is analogous to the crossover that happens during sexual reproduction in biology. New solutions can also be generated by cloning an existing solution, which is analogous to asexual reproduction. Newly generated solutions may be mutated before being added to the population. The aim of recombination is to transfer good characteristics from two different parents to one child.
Metaheuristic in computer science and mathematical optimization is a higher-level procedure or heuristic designed to find, generate, tune, or select a heuristic that may provide a sufficiently good solution to an optimization problem or a machine learning problem, especially with incomplete or imperfect information or limited computation capacity. Metaheuristics sample a subset of solutions which is otherwise too large to be completely enumerated or otherwise explored. Metaheuristics may make relatively few assumptions about the optimization problem being solved and so may be usable for a variety of problems. Their use is always of interest when exact or other (approximate) methods are not available or are not expedient, either because the calculation time is too long or because, for example, the solution provided is too imprecise.
Evolution strategy (ES) from computer science is a subclass of evolutionary algorithms, which serves as an optimization technique. It uses the major genetic operators mutation, recombination and selection of parents.
Selection is a genetic operator in an evolutionary algorithm (EA). An EA is a metaheuristic inspired by biological evolution and aims to solve challenging problems at least approximately. Selection has a dual purpose: on the one hand, it can choose individual genomes from a population for subsequent breeding. In addition, selection mechanisms are also used to choose candidate solutions (individuals) for the next generation. The biological model is natural selection.
In computational complexity and optimization the no free lunch theorem is a result that states that for certain types of mathematical problems, the computational cost of finding a solution, averaged over all problems in the class, is the same for any solution method. The name alludes to the saying "no such thing as a free lunch", that is, no method offers a "short cut". This is under the assumption that the search space is a probability density function. It does not apply to the case where the search space has underlying structure that can be exploited more efficiently than random search or even has closed-form solutions that can be determined without search at all. For such probabilistic assumptions, the outputs of all procedures solving a particular type of problem are statistically identical. A colourful way of describing such a circumstance, introduced by David Wolpert and William G. Macready in connection with the problems of search and optimization, is to say that there is no free lunch. Wolpert had previously derived no free lunch theorems for machine learning. Before Wolpert's article was published, Cullen Schaffer independently proved a restricted version of one of Wolpert's theorems and used it to critique the current state of machine learning research on the problem of induction.
In multi-objective optimization, the Pareto front is the set of all Pareto efficient solutions. The concept is widely used in engineering. It allows the designer to restrict attention to the set of efficient choices, and to make tradeoffs within this set, rather than considering the full range of every parameter.
Estimation of distribution algorithms (EDAs), sometimes called probabilistic model-building genetic algorithms (PMBGAs), are stochastic optimization methods that guide the search for the optimum by building and sampling explicit probabilistic models of promising candidate solutions. Optimization is viewed as a series of incremental updates of a probabilistic model, starting with the model encoding an uninformative prior over admissible solutions and ending with the model that generates only the global optima.
Differential evolution (DE) is an evolutionary algorithm to optimize a problem by iteratively trying to improve a candidate solution with regard to a given measure of quality. Such methods are commonly known as metaheuristics as they make few or no assumptions about the optimized problem and can search very large spaces of candidate solutions. However, metaheuristics such as DE do not guarantee an optimal solution is ever found.
In computer programming, genetic representation is a way of presenting solutions/individuals in evolutionary computation methods. The term encompasses both the concrete data structures and data types used to realize the genetic material of the candidate solutions in the form of a genome, and the relationships between search space and problem space. In the simplest case, the search space corresponds to the problem space. The choice of problem representation is tied to the choice of genetic operators, both of which have a decisive effect on the efficiency of the optimization. Genetic representation can encode appearance, behavior, physical qualities of individuals. Difference in genetic representations is one of the major criteria drawing a line between known classes of evolutionary computation.
In computer science and operations research, a memetic algorithm (MA) is an extension of an evolutionary algorithm (EA) that aims to accelerate the evolutionary search for the optimum. An EA is a metaheuristic that reproduces the basic principles of biological evolution as a computer algorithm in order to solve challenging optimization or planning tasks, at least approximately. An MA uses one or more suitable heuristics or local search techniques to improve the quality of solutions generated by the EA and to speed up the search. The effects on the reliability of finding the global optimum depend on both the use case and the design of the MA.
Kalyanmoy Deb is an Indian computer scientist. Deb is the Herman E. & Ruth J. Koenig Endowed Chair Professor in the Department of Electrical and Computing Engineering at Michigan State University. Deb is also a professor in the Department of Computer Science and Engineering and the Department of Mechanical Engineering at Michigan State University.
Multi-objective optimization or Pareto optimization is an area of multiple-criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously. Multi-objective is a type of vector optimization that has been applied in many fields of science, including engineering, economics and logistics where optimal decisions need to be taken in the presence of trade-offs between two or more conflicting objectives. Minimizing cost while maximizing comfort while buying a car, and maximizing performance whilst minimizing fuel consumption and emission of pollutants of a vehicle are examples of multi-objective optimization problems involving two and three objectives, respectively. In practical problems, there can be more than three objectives.
Bilevel optimization is a special kind of optimization where one problem is embedded (nested) within another. The outer optimization task is commonly referred to as the upper-level optimization task, and the inner optimization task is commonly referred to as the lower-level optimization task. These problems involve two kinds of variables, referred to as the upper-level variables and the lower-level variables.
Reward-based selection is a technique used in evolutionary algorithms for selecting potentially useful solutions for recombination. The probability of being selected for an individual is proportional to the cumulative reward obtained by the individual. The cumulative reward can be computed as a sum of the individual reward and the reward inherited from parents.
In applied mathematics, test functions, known as artificial landscapes, are useful to evaluate characteristics of optimization algorithms, such as convergence rate, precision, robustness and general performance.
The Fly Algorithm is a computational method within the field of evolutionary algorithms, designed for direct exploration of 3D spaces in applications such as computer stereo vision, robotics, and medical imaging. Unlike traditional image-based stereovision, which relies on matching features to construct 3D information, the Fly Algorithm operates by generating a 3D representation directly from random points, termed "flies." Each fly is a coordinate in 3D space, evaluated for its accuracy by comparing its projections in a scene. By iteratively refining the positions of flies based on fitness criteria, the algorithm can construct an optimized spatial representation. The Fly Algorithm has expanded into various fields, including applications in digital art, where it is used to generate complex visual patterns.
Lexicographic max-min optimization is a kind of multi-objective optimization. In general, multi-objective optimization deals with optimization problems with two or more objective functions to be optimized simultaneously. Lexmaxmin optimization presumes that the decision-maker would like the smallest objective value to be as high as possible; subject to this, the second-smallest objective should be as high as possible; and so on. In other words, the decision-maker ranks the possible solutions according to a leximin order of their objective function values.