Genetic operator

Last updated

A genetic operator is an operator used in evolutionary algorithms (EA) to guide the algorithm towards a solution to a given problem. There are three main types of operators (mutation, crossover and selection), which must work in conjunction with one another in order for the algorithm to be successful. [1] Genetic operators are used to create and maintain genetic diversity (mutation operator), combine existing solutions (also known as chromosomes) into new solutions (crossover) and select between solutions (selection). [2] [3]

Contents

The classic representatives of evolutionary algorithms include genetic algorithms, evolution strategies, genetic programming and evolutionary programming. In his book discussing the use of genetic programming for the optimization of complex problems, computer scientist John Koza has also identified an 'inversion' or 'permutation' operator; however, the effectiveness of this operator has never been conclusively demonstrated and this operator is rarely discussed in the field of genetic programming. [4] [5] For combinatorial problems, however, these and other operators tailored to permutations are frequently used by other EAs. [6] [7]

Mutation (or mutation-like) operators are said to be unary operators, as they only operate on one chromosome at a time. In contrast, crossover operators are said to be binary operators, as they operate on two chromosomes at a time, combining two existing chromosomes into one new chromosome. [8] [9]

Operators

Genetic variation is a necessity for the process of evolution. Genetic operators used in evolutionary algorithms are analogous to those in the natural world: survival of the fittest, or selection; reproduction (crossover, also called recombination); and mutation.

Selection

Selection operators give preference to better candidate solutions (chromosomes), allowing them to pass on their 'genes' to the next generation (iteration) of the algorithm. The best solutions are determined using some form of objective function (also known as a 'fitness function' in evolutionary algorithms), before being passed to the crossover operator. Different methods for choosing the best solutions exist, for example, fitness proportionate selection and tournament selection. [10] A further or the same selection operator is used to determine the individuals for beeing selected to form the next parental generation. The selection operator may also ensure that the best solution(s) from the current generation always become(s) a member of the next generation without being altered; [11] this is known as elitism or elitist selection. [2] [12] [13]

Crossover

Crossover is the process of taking more than one parent solutions (chromosomes) and producing a child solution from them. By recombining portions of good solutions, the evolutionary algorithm is more likely to create a better solution. [2] As with selection, there are a number of different methods for combining the parent solutions, including the edge recombination operator (ERO) and the 'cut and splice crossover' and 'uniform crossover' methods. The crossover method is often chosen to closely match the chromosome's representation of the solution; this may become particularly important when variables are grouped together as building blocks, which might be disrupted by a non-respectful crossover operator. Similarly, crossover methods may be particularly suited to certain problems; the ERO is considered a good option for solving the travelling salesman problem. [14]

Mutation

The mutation operator encourages genetic diversity amongst solutions and attempts to prevent the evolutionary algorithm converging to a local minimum by stopping the solutions becoming too close to one another. In mutating the current pool of solutions, a given solution may change between slightly and entirely from the previous solution. [15] By mutating the solutions, an evolutionary algorithm can reach an improved solution solely through the mutation operator. [2] Again, different methods of mutation may be used; these range from a simple bit mutation (flipping random bits in a binary string chromosome with some low probability) to more complex mutation methods in which genes in the solution are changed, for example by adding a random value from the Gaussian distribution to the current gene value. As with the crossover operator, the mutation method is usually chosen to match the representation of the solution within the chromosome. [15] [3]

Combining operators

While each operator acts to improve the solutions produced by the evolutionary algorithm working individually, the operators must work in conjunction with each other for the algorithm to be successful in finding a good solution. [3] Using the selection operator on its own will tend to fill the solution population with copies of the best solution from the population. If the selection and crossover operators are used without the mutation operator, the algorithm will tend to converge to a local minimum, that is, a good but sub-optimal solution to the problem. Using the mutation operator on its own leads to a random walk through the search space. Only by using all three operators together can the evolutionary algorithm become a noise-tolerant global search algorithm, yielding good solutions to the problem at hand. [2]

Related Research Articles

<span class="mw-page-title-main">Genetic programming</span> Evolving computer programs with techniques analogous to natural genetic processes

Genetic programming (GP) is an evolutionary algorithm, an artificial intelligence technique mimicking natural evolution, which operates on a population of programs. It applies the genetic operators selection according to a predefined fitness measure, mutation and crossover.

<span class="mw-page-title-main">Genetic algorithm</span> Competitive algorithm for searching a problem space

In computer science and operations research, a genetic algorithm (GA) is a metaheuristic inspired by the process of natural selection that belongs to the larger class of evolutionary algorithms (EA). Genetic algorithms are commonly used to generate high-quality solutions to optimization and search problems via biologically inspired operators such as selection, crossover, and mutation. Some examples of GA applications include optimizing decision trees for better performance, solving sudoku puzzles, hyperparameter optimization, and causal inference.

<span class="mw-page-title-main">Evolutionary algorithm</span> Subset of evolutionary computation

Evolutionary algorithms (EA) reproduce essential elements of the biological evolution in a computer algorithm in order to solve “difficult” problems, at least approximately, for which no exact or satisfactory solution methods are known. They belong to the class of metaheuristics and are a subset of population based bio-inspired algorithms and evolutionary computation, which itself are part of the field of computational intelligence. The mechanisms of biological evolution that an EA mainly imitates are reproduction, mutation, recombination and selection. Candidate solutions to the optimization problem play the role of individuals in a population, and the fitness function determines the quality of the solutions (see also loss function). Evolution of the population then takes place after the repeated application of the above operators.

<span class="mw-page-title-main">Evolutionary computation</span> Trial and error problem solvers with a metaheuristic or stochastic optimization character

Evolutionary computation from computer science is a family of algorithms for global optimization inspired by biological evolution, and the subfield of artificial intelligence and soft computing studying these algorithms. In technical terms, they are a family of population-based trial and error problem solvers with a metaheuristic or stochastic optimization character.

<span class="mw-page-title-main">Fitness function</span> Objective function of evolutionary algorithm

A fitness function is a particular type of objective or cost function that is used to summarize, as a single figure of merit, how close a given candidate solution is to achieving the set aims. It is an important component of evolutionary algorithms (EA), such as genetic programming, evolution strategies or genetic algorithms. An EA is a metaheuristic that reproduces the basic principles of biological evolution as a computer algorithm in order to solve challenging optimization or planning tasks, at least approximately. For this purpose, many candidate solutions are generated, which are evaluated using a fitness function in order to guide the evolutionary development towards the desired goal. Similar quality functions are also used in other metaheuristics, such as ant colony optimization or particle swarm optimization.

<span class="mw-page-title-main">Crossover (evolutionary algorithm)</span> Operator used to vary the programming of chromosomes from one generation to the next

Crossover in evolutionary algorithms and evolutionary computation, also called recombination, is a genetic operator used to combine the genetic information of two parents to generate new offspring. It is one way to stochastically generate new solutions from an existing population, and is analogous to the crossover that happens during sexual reproduction in biology. New solutions can also be generated by cloning an existing solution, which is analogous to asexual reproduction. Newly generated solutions may be mutated before being added to the population. The aim of recombination is to transfer good characteristics from two different parents to one child.

<span class="mw-page-title-main">Mutation (evolutionary algorithm)</span> Genetic operation used to add population diversity

Mutation is a genetic operator used to maintain genetic diversity of the chromosomes of a population of an evolutionary algorithm (EA), including genetic algorithms in particular. It is analogous to biological mutation.

<span class="mw-page-title-main">Chromosome (evolutionary algorithm)</span> Set of parameters for a genetic or evolutionary algorithm

A chromosome or genotype in evolutionary algorithms (EA) is a set of parameters which define a proposed solution of the problem that the evolutionary algorithm is trying to solve. The set of all solutions, also called individuals according to the biological model, is known as the population. The genome of an individual consists of one, more rarely of several, chromosomes and corresponds to the genetic representation of the task to be solved. A chromosome is composed of a set of genes, where a gene consists of one or more semantically connected parameters, which are often also called decision variables. They determine one or more phenotypic characteristics of the individual or at least have an influence on them. In the basic form of genetic algorithms, the chromosome is represented as a binary string, while in later variants and in EAs in general, a wide variety of other data structures are used.

Metaheuristic in computer science and mathematical optimization is a higher-level procedure or heuristic designed to find, generate, tune, or select a heuristic that may provide a sufficiently good solution to an optimization problem or a machine learning problem, especially with incomplete or imperfect information or limited computation capacity. Metaheuristics sample a subset of solutions which is otherwise too large to be completely enumerated or otherwise explored. Metaheuristics may make relatively few assumptions about the optimization problem being solved and so may be usable for a variety of problems. Their use is always of interest when exact or other (approximate) methods are not available or are not expedient, either because the calculation time is too long or because, for example, the solution provided is too imprecise.

In evolutionary computation, a human-based genetic algorithm (HBGA) is a genetic algorithm that allows humans to contribute solution suggestions to the evolutionary process. For this purpose, a HBGA has human interfaces for initialization, mutation, and recombinant crossover. As well, it may have interfaces for selective evaluation. In short, a HBGA outsources the operations of a typical genetic algorithm to humans.

<span class="mw-page-title-main">Evolution strategy</span>

Evolution strategy (ES) from computer science is a subclass of evolutionary algorithms, which serves as an optimization technique. It uses the major genetic operators mutation, recombination and selection of parents.

<span class="mw-page-title-main">Gene expression programming</span> Evolutionary algorithm

Gene expression programming (GEP) in computer programming is an evolutionary algorithm that creates computer programs or models. These computer programs are complex tree structures that learn and adapt by changing their sizes, shapes, and composition, much like a living organism. And like living organisms, the computer programs of GEP are also encoded in simple linear chromosomes of fixed length. Thus, GEP is a genotype–phenotype system, benefiting from a simple genome to keep and transmit the genetic information and a complex phenotype to explore the environment and adapt to it.

<span class="mw-page-title-main">Selection (evolutionary algorithm)</span>

Selection is a genetic operator in an evolutionary algorithm (EA). An EA is a metaheuristic inspired by biological evolution and aims to solve challenging problems at least approximately. Selection has a dual purpose: on the one hand, it can choose individual genomes from a population for subsequent breeding. In addition, selection mechanisms are also used to choose candidate solutions (individuals) for the next generation. The biological model is natural selection.

<span class="mw-page-title-main">Mating pool</span>

Mating pool is a concept used in evolutionary algorithms and means a population of parents for the next population.

<span class="mw-page-title-main">Premature convergence</span>

Premature convergence is an unwanted effect in evolutionary algorithms (EA), a metaheuristic that mimics the basic principles of biological evolution as a computer algorithm for solving an optimization problem. The effect means that the population of an EA has converged too early, resulting in being suboptimal. In this context, the parental solutions, through the aid of genetic operators, are not able to generate offspring that are superior to, or outperform, their parents. Premature convergence is a common problem found in evolutionary algorithms, as it leads to a loss, or convergence of, a large number of alleles, subsequently making it very difficult to search for a specific gene in which the alleles were present. An allele is considered lost if, in a population, a gene is present, where all individuals are sharing the same value for that particular gene. An allele is, as defined by De Jong, considered to be a converged allele, when 95% of a population share the same value for a certain gene.

The expression computational intelligence (CI) usually refers to the ability of a computer to learn a specific task from data or experimental observation. Even though it is commonly considered a synonym of soft computing, there is still no commonly accepted definition of computational intelligence.

<span class="mw-page-title-main">Genetic representation</span> Data structure and types for evolutionary computation

In computer programming, genetic representation is a way of presenting solutions/individuals in evolutionary computation methods. The term encompasses both the concrete data structures and data types used to realize the genetic material of the candidate solutions in the form of a genome, and the relationships between search space and problem space. In the simplest case, the search space corresponds to the problem space. The choice of problem representation is tied to the choice of genetic operators, both of which have a decisive effect on the efficiency of the optimization. Genetic representation can encode appearance, behavior, physical qualities of individuals. Difference in genetic representations is one of the major criteria drawing a line between known classes of evolutionary computation.

<span class="mw-page-title-main">Fly algorithm</span>

The Fly Algorithm is a computational method within the field of evolutionary algorithms, designed for direct exploration of 3D spaces in applications such as computer stereo vision, robotics, and medical imaging. Unlike traditional image-based stereovision, which relies on matching features to construct 3D information, the Fly Algorithm operates by generating a 3D representation directly from random points, termed "flies." Each fly is a coordinate in 3D space, evaluated for its accuracy by comparing its projections in a scene. By iteratively refining the positions of flies based on fitness criteria, the algorithm can construct an optimized spatial representation. The Fly Algorithm has expanded into various fields, including applications in digital art, where it is used to generate complex visual patterns.

Soft computing is an umbrella term used to describe types of algorithms that produce approximate solutions to unsolvable high-level problems in computer science. Typically, traditional hard-computing algorithms heavily rely on concrete data and mathematical models to produce solutions to problems. Soft computing was coined in the late 20th century. During this period, revolutionary research in three fields greatly impacted soft computing. Fuzzy logic is a computational paradigm that entertains the uncertainties in data by using levels of truth rather than rigid 0s and 1s in binary. Next, neural networks which are computational models influenced by human brain functions. Finally, evolutionary computation is a term to describe groups of algorithm that mimic natural processes such as evolution and natural selection.

<span class="mw-page-title-main">Genotypic and phenotypic repair</span> Component of an evolutionary algorithm

Genotypic and phenotypic repair are optional components of an evolutionary algorithm (EA). An EA reproduces essential elements of biological evolution as a computer algorithm in order to solve demanding optimization or planning tasks, at least approximately. A candidate solution is represented by a - usually linear - data structure that plays the role of an individual's chromosome. New solution candidates are generated by mutation and crossover operators following the example of biology. These offspring may be defective, which is corrected or compensated for by genotypic or phenotypic repair.

References

  1. Jiang, Dazhi; Tian, Zhihang; He, Zhihui; Tu, Geng; Huang, Ruixiang (1 September 2021). "A framework for designing of genetic operators automatically based on gene expression programming and differential evolution". Natural Computing. 20 (3): 395–411. doi:10.1007/s11047-020-09830-2. ISSN   1572-9796.
  2. 1 2 3 4 5 "Introduction to Genetic Algorithms". Archived from the original on 11 August 2015. Retrieved 20 August 2015.
  3. 1 2 3 Eiben, A.E.; Smith, J.E. (2015). "Representation, Mutation, and Recombination". Introduction to Evolutionary Computing. Natural Computing Series. Berlin, Heidelberg: Springer. pp. 49–78. doi:10.1007/978-3-662-44874-8. ISBN   978-3-662-44873-1. S2CID   20912932.
  4. Koza, John R. (1996). Genetic programming : on the programming of computers by means of natural selection (6th ed.). Cambridge, Mass.: MIT Press. ISBN   0-262-11170-5.
  5. "Genetic programming operators" . Retrieved 20 August 2015.
  6. Eiben, A.E.; Smith, J.E. (2015). "Mutation for Permutation Representation". Introduction to Evolutionary Computing. Natural Computing Series (2nd ed.). Berlin, Heidelberg: Springer. pp. 69–70. doi:10.1007/978-3-662-44874-8. ISBN   978-3-662-44873-1.
  7. Yu, Xinjie; Gen, Mitsuo (2010). "Mutation Operators". Introduction to Evolutionary Algorithms. Decision Engineering. London: Springer. pp. 286–288. doi:10.1007/978-1-84996-129-5. ISBN   978-1-84996-128-8.
  8. "Genetic operators". Archived from the original on 30 December 2017. Retrieved 20 August 2015.
  9. Eiben, A.E.; Smith, J.E. (2015). "Variation Operators (Mutation and Recombination)". Introduction to Evolutionary Computing. Natural Computing Series (2nd ed.). Berlin, Heidelberg: Springer. pp. 31–33. doi:10.1007/978-3-662-44874-8. ISBN   978-3-662-44873-1.
  10. Eiben, A.E.; Smith, J.E. (2015). "Parent Selection". Introduction to Evolutionary Computing. Natural Computing Series (2nd ed.). Berlin, Heidelberg: Springer. pp. 80–87. doi:10.1007/978-3-662-44874-8. ISBN   978-3-662-44873-1.
  11. Eiben, A.E.; Smith, J.E. (2015). "Survivor Selection". Introduction to Evolutionary Computing. Natural Computing Series (2nd ed.). Berlin, Heidelberg: Springer. pp. 87–90. doi:10.1007/978-3-662-44874-8. ISBN   978-3-662-44873-1.
  12. "Introduction to Genetic Algorithm" . Retrieved 20 August 2015.
  13. Eiben, A.E.; Smith, J.E. (2015). Introduction to Evolutionary Computing. Natural Computing Series (2nd ed.). Berlin, Heidelberg: Springer. p. 89. doi:10.1007/978-3-662-44874-8. ISBN   978-3-662-44873-1.
  14. Whitley, Darrell; Starkweather, Timothy; Fuquay, D'Ann (1989), Schaffer, J.D. (ed.), "Scheduling Problems and Traveling Salesmen: The Genetic Edge Recombination Operator", Proceedings of the 3rd International Conference on Genetic Algorithms (ICGA), San Francisco: Morgan Kaufmann, pp. 133–140, ISBN   1558600663
  15. 1 2 Bäck, Thomas; Fogel, David B.; Whitley, Darrell; Angeline, Peter J. (1999). "Mutation operators". In Bäck, Thomas; Fogel, David B.; Michalewicz, Zbigniew (eds.). Evolutionary computation Vol. 1, Basic algorithms and operators. Boca Racon: CRC Press. pp. 237–255. ISBN   0-585-30560-9. OCLC   45730387.