Cellular evolutionary algorithm

Last updated

A cellular evolutionary algorithm (cEA) is a kind of evolutionary algorithm (EA) in which individuals cannot mate arbitrarily, but every one interacts with its closer neighbors on which a basic EA is applied (selection, variation, replacement).

Contents

Example evolution of a cEA depending on the shape of the population, from squared (left) to unidimensional ring (right). Darker colors mean better solutions. Observe how shapes different from the traditional square keep diversity (higher exploration) for a longer time. Four snapshots of cEAs at generations 0-50-100-150. Evolution of several cEAs.png
Example evolution of a cEA depending on the shape of the population, from squared (left) to unidimensional ring (right). Darker colors mean better solutions. Observe how shapes different from the traditional square keep diversity (higher exploration) for a longer time. Four snapshots of cEAs at generations 0-50-100-150.

The cellular model simulates natural evolution from the point of view of the individual, which encodes a tentative (optimization, learning, search) problem solution. The essential idea of this model is to provide the EA population with a special structure defined as a connected graph, in which each vertex is an individual who communicates with his nearest neighbors. Particularly, individuals are conceptually set in a toroidal mesh, and are only allowed to recombine with close individuals. This leads us to a kind of locality known as isolation by distance. The set of potential mates of an individual is called its neighborhood. It is known that, in this kind of algorithm, similar individuals tend to cluster creating niches, and these groups operate as if they were separate sub-populations (islands). Anyway, there is no clear borderline between adjacent groups, and close niches could be easily colonized by competitive niches and maybe merge solution contents during the process. Simultaneously, farther niches can be affected more slowly.

Introduction

A cellular evolutionary algorithm (cEA) usually evolves a structured bidimensional grid of individuals, although other topologies are also possible. In this grid, clusters of similar individuals are naturally created during evolution, promoting exploration in their boundaries, while exploitation is mainly performed by direct competition and merging inside them.

Example models of neighborhoods in cellular EAs: linear, compact, diamond and... any other! CEA neighborhood types.png
Example models of neighborhoods in cellular EAs: linear, compact, diamond and... any other!

The grid is usually 2D toroidal structure, although the number of dimensions can be easily extended (to 3D) or reduced (to 1D, e.g. a ring). The neighborhood of a particular point of the grid (where an individual is placed) is defined in terms of the Manhattan distance from it to others in the population. Each point of the grid has a neighborhood that overlaps the neighborhoods of nearby individuals. In the basic algorithm, all the neighborhoods have the same size and identical shapes. The two most commonly used neighborhoods are L5, also called Von Neumann or NEWS (North, East, West and South), and C9, also known as Moore neighborhood. Here, L stands for Linear while C stands for Compact.

In cEAs, the individuals can only interact with their neighbors in the reproductive cycle where the variation operators are applied. This reproductive cycle is executed inside the neighborhood of each individual and, generally, consists in selecting two parents among its neighbors according to a certain criterion, applying the variation operators to them (recombination and mutation for example), and replacing the considered individual by the recently created offspring following a given criterion, for instance, replace if the offspring represents a better solution than the considered individual.

Synchronous versus asynchronous

In a regular synchronous cEA, the algorithm proceeds from the very first top left individual to the right and then to the several rows by using the information in the population to create a new temporary population. After finishing with the bottom-right last individual the temporary population is full with the newly computed individuals, and the replacement step starts. In it, the old population is completely and synchronously replaced with the newly computed one according to some criterion. Usually, the replacement keeps the best individual in the same position of both populations, that is, elitism is used.

We must notice that according to the update policy of the population used, we could also define an asynchronous cEA. This is also a well-known issue in cellular automata. In asynchronous cEAs the order in which the individuals in the grid are update changes depending on the criterion used: line sweep, fixed random sweep, new random sweep, and uniform choice. These are the four most usual ways of updating the population. All of them keep using the newly computed individual (or the original if better) for the computations of its neighbors immediately. This makes the population to hold at any time individual in different states of evolution, defining a very interesting new line of research.

The ratio between the radii of the neighborhood to the topology defines the exploration/exploitation capability of the cEA. This could be even tuned during the run of the algorithm, giving the researcher a unique mechanism to search in very complex landscapes. Ratio concept in cEAs.png
The ratio between the radii of the neighborhood to the topology defines the exploration/exploitation capability of the cEA. This could be even tuned during the run of the algorithm, giving the researcher a unique mechanism to search in very complex landscapes.

The overlap of the neighborhoods provides an implicit mechanism of solution migration to the cEA. Since the best solutions spread smoothly through the whole population, genetic diversity in the population is preserved longer than in non structured EAs. This soft dispersion of the best solutions through the population is one of the main issues of the good tradeoff between exploration and exploitation that cEAs perform during the search. It is then easy to see that we could tune this tradeoff (and hence, tune the genetic diversity level along the evolution) by modifying (for instance) the size of the neighborhood used, as the overlap degree between the neighborhoods grows according to the size of the neighborhood.

A cEA can be seen as a cellular automaton (CA) with probabilistic rewritable rules, where the alphabet of the CA is equivalent to the potential number of solutions of the problem. Hence, if we see cEAs as a kind of CA, it is possible to import knowledge from the field of CAs to cEAs, and in fact this is an interesting open research line.

Parallelism

Cellular EAs are very amenable to parallelism, thus usually found in the literature of parallel metaheuristics. In particular, fine grain parallelism can be used to assign independent threads of execution to every individual, thus allowing the whole cEA to run on a concurrent or actually parallel hardware platform. In this way, large time reductions can be obtained when running cEAs on FPGAs or GPUs.

However, it is important to stress that cEAs are a model of search, in many senses different from traditional EAs. Also, they can be run in sequential and parallel platforms, reinforcing the fact that the model and the implementation are two different concepts.

See here for a complete description on the fundamentals for the understanding, design, and application of cEAs.

See also

Related Research Articles

<span class="mw-page-title-main">Genetic algorithm</span> Competitive algorithm for searching a problem space

In computer science and operations research, a genetic algorithm (GA) is a metaheuristic inspired by the process of natural selection that belongs to the larger class of evolutionary algorithms (EA). Genetic algorithms are commonly used to generate high-quality solutions to optimization and search problems by relying on biologically inspired operators such as mutation, crossover and selection. Some examples of GA applications include optimizing decision trees for better performance, solving sudoku puzzles, hyperparameter optimization, causal inference, etc.

<span class="mw-page-title-main">Evolutionary algorithm</span> Subset of evolutionary computation

In computational intelligence (CI), an evolutionary algorithm (EA) is a subset of evolutionary computation, a generic population-based metaheuristic optimization algorithm. An EA uses mechanisms inspired by biological evolution, such as reproduction, mutation, recombination, and selection. Candidate solutions to the optimization problem play the role of individuals in a population, and the fitness function determines the quality of the solutions. Evolution of the population then takes place after the repeated application of the above operators.

In computer science, evolutionary computation is a family of algorithms for global optimization inspired by biological evolution, and the subfield of artificial intelligence and soft computing studying these algorithms. In technical terms, they are a family of population-based trial and error problem solvers with a metaheuristic or stochastic optimization character.

A fitness function is a particular type of objective function that is used to summarise, as a single figure of merit, how close a given design solution is to achieving the set aims. Fitness functions are used in evolutionary algorithms (EA), such as genetic programming and genetic algorithms to guide simulations towards optimal design solutions.

In genetic algorithms (GA), or more general, evolutionary algorithms (EA), a chromosome is a set of parameters which define a proposed solution of the problem that the evolutionary algorithm is trying to solve. The set of all solutions, also called individuals according to the biological model, is known as the population. The genome of an individual consists of one, more rarely of several, chromosomes and corresponds to the genetic representation of the task to be solved. A chromosome is composed of a set of genes, where a gene consists of one or more semantically connected parameters, which are often also called decision variables. They determine one or more phenotypic characteristics of the individual or at least have an influence on them. In the basic form of genetic algorithms, the chromosome is represented as a binary string, while in later variants and in EAs in general, a wide variety of other data structures are used.

In computer science and mathematical optimization, a metaheuristic is a higher-level procedure or heuristic designed to find, generate, tune, or select a heuristic that may provide a sufficiently good solution to an optimization problem or a machine learning problem, especially with incomplete or imperfect information or limited computation capacity. Metaheuristics sample a subset of solutions which is otherwise too large to be completely enumerated or otherwise explored. Metaheuristics may make relatively few assumptions about the optimization problem being solved and so may be usable for a variety of problems.

In evolutionary algorithms (EA), the term of premature convergence means that a population for an optimization problem converged too early, resulting in being suboptimal. In this context, the parental solutions, through the aid of genetic operators, are not able to generate offspring that are superior to, or outperform, their parents. Premature convergence is a common problem found in evolutionary algorithms in general and genetic algorithms in particular, as it leads to a loss, or convergence of, a large number of alleles, subsequently making it very difficult to search for a specific gene in which the alleles were present. An allele is considered lost if, in a population, a gene is present, where all individuals are sharing the same value for that particular gene. An allele is, as defined by De Jong, considered to be a converged allele, when 95% of a population share the same value for a certain gene.

<span class="mw-page-title-main">Differential evolution</span>

In evolutionary computation, differential evolution (DE) is a method that optimizes a problem by iteratively trying to improve a candidate solution with regard to a given measure of quality. Such methods are commonly known as metaheuristics as they make few or no assumptions about the optimized problem and can search very large spaces of candidate solutions. However, metaheuristics such as DE do not guarantee an optimal solution is ever found.

In computer programming, genetic representation is a way of presenting solutions/individuals in evolutionary computation methods. The term encompasses both the concrete data structures and data types used to realize the genetic material of the candidate solutions in the form of a genome, and the relationships between search space and problem space. In the simplest case, the search space corresponds to the problem space. The choice of problem representation is tied to the choice of genetic operators, both of which have a decisive effect on the efficiency of the optimization. Genetic representation can encode appearance, behavior, physical qualities of individuals. Difference in genetic representations is one of the major criteria drawing a line between known classes of evolutionary computation.

A memetic algorithm (MA) in computer science and operations research, is an extension of the traditional genetic algorithm (GA) or more general evolutionary algorithm (EA). It may provide a sufficiently good solution to an optimization problem. It uses a suitable heuristic or local search technique to improve the quality of solutions generated by the EA and to reduce the likelihood of premature convergence.

ParadisEO is a white-box object-oriented framework dedicated to the flexible design of metaheuristics. It uses EO, a template-based, ANSI-C++ compliant computation library. ParadisEO is portable across both Windows system and sequential platforms. ParadisEO is distributed under the CeCill license and can be used under several environments.

Parallel metaheuristic is a class of techniques that are capable of reducing both the numerical effort and the run time of a metaheuristic. To this end, concepts and technologies from the field of parallelism in computer science are used to enhance and even completely modify the behavior of existing metaheuristics. Just as it exists a long list of metaheuristics like evolutionary algorithms, particle swarm, ant colony optimization, simulated annealing, etc. it also exists a large set of different techniques strongly or loosely based in these ones, whose behavior encompasses the multiple parallel execution of algorithm components that cooperate in some way to solve a problem on a given parallel hardware platform.

A hyper-heuristic is a heuristic search method that seeks to automate, often by the incorporation of machine learning techniques, the process of selecting, combining, generating or adapting several simpler heuristics to efficiently solve computational search problems. One of the motivations for studying hyper-heuristics is to build systems which can handle classes of problems rather than solving just one problem.

In applied mathematics, multimodal optimization deals with optimization tasks that involve finding all or most of the multiple solutions of a problem, as opposed to a single best solution. Evolutionary multimodal optimization is a branch of evolutionary computation, which is closely related to machine learning. Wong provides a short survey, wherein the chapter of Shir and the book of Preuss cover the topic in more detail.

<span class="mw-page-title-main">Enrique Alba</span> Spanish computer science professor (born 1968)

Enrique Alba is a professor of computer science at the University of Málaga, Spain.

MCACEA is a general framework that uses a single evolutionary algorithm (EA) per agent sharing their optimal solutions to coordinate the evolutions of the EAs populations using cooperation objectives. This framework can be used to optimize some characteristics of multiple cooperating agents in mathematical optimization problems. More specifically, due to its nature in which both individual and cooperation objectives are optimize, MCACEA is used in multi-objective optimization problems.

<span class="mw-page-title-main">HeuristicLab</span> Software environment

HeuristicLab is a software environment for heuristic and evolutionary algorithms, developed by members of the Heuristic and Evolutionary Algorithm Laboratory (HEAL) at the University of Applied Sciences Upper Austria, in Hagenberg im Mühlkreis. HeuristicLab has a strong focus on providing a graphical user interface so that users are not required to have comprehensive programming skills to adjust and extend the algorithms for a particular problem. In HeuristicLab algorithms are represented as operator graphs and changing or rearranging operators can be done by drag-and-drop without actually writing code. The software thereby tries to shift algorithm development capability from the software engineer to the user and practitioner. Developers can still extend the functionality on code level and can use HeuristicLab's plug-in mechanism that allows them to integrate custom algorithms, solution representations or optimization problems.

Biogeography-based optimization (BBO) is an evolutionary algorithm (EA) that optimizes a function by stochastically and iteratively improving candidate solutions with regard to a given measure of quality, or fitness function. BBO belongs to the class of metaheuristics since it includes many variations, and since it does not make any assumptions about the problem and can therefore be applied to a wide class of problems.

The population model of an evolutionary algorithm (EA) describes the structural properties of its population to which its members are subject. A population is the set of all proposed solutions of an EA considered in one iteration, which are also called individuals according to the biological role model. The individuals of a population can generate further individuals as offspring with the help of the genetic operators of the procedure.

References