Part of a series on the |
Evolutionary algorithm |
---|
Genetic algorithm (GA) |
Genetic programming (GP) |
Differential evolution |
Evolution strategy |
Evolutionary programming |
Related topics |
A chromosome or genotype in evolutionary algorithms (EA) is a set of parameters which define a proposed solution of the problem that the evolutionary algorithm is trying to solve. The set of all solutions, also called individuals according to the biological model, is known as the population . [1] [2] The genome of an individual consists of one, more rarely of several, [3] [4] chromosomes and corresponds to the genetic representation of the task to be solved. A chromosome is composed of a set of genes, where a gene consists of one or more semantically connected parameters, which are often also called decision variables. They determine one or more phenotypic characteristics of the individual or at least have an influence on them. [2] In the basic form of genetic algorithms, the chromosome is represented as a binary string, [5] while in later variants [6] [7] and in EAs in general, a wide variety of other data structures are used. [8] [9] [10]
When creating the genetic representation of a task, it is determined which decision variables and other degrees of freedom of the task should be improved by the EA and possible additional heuristics and how the genotype-phenotype mapping should look like. The design of a chromosome translates these considerations into concrete data structures for which an EA then has to be selected, configured, extended, or, in the worst case, created. Finding a suitable representation of the problem domain for a chromosome is an important consideration, as a good representation will make the search easier by limiting the search space; similarly, a poorer representation will allow a larger search space. [11] In this context, suitable mutation and crossover operators [2] must also be found or newly defined to fit the chosen chromosome design. An important requirement for these operators is that they not only allow all points in the search space to be reached in principle, but also make this as easy as possible. [12] [13]
The following requirements must be met by a well-suited chromosome:
While the first requirement is indispensable, depending on the application and the EA used, one usually only has to be satisfied with fulfilling the remaining requirements as far as possible. The evolutionary search is supported and possibly considerably accelerated by a fulfillment as complete as possible.
In their classical form, GAs use bit strings and map the decision variables to be optimized onto them. An example for one Boolean and three integer decision variables with the value ranges , and may illustrate this:
decision variable: | |||||||||||||||||
bits: | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
position: | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
Note that the negative number here is given in two's complement. This straight forward representation uses five bits to represent the three values of , although two bits would suffice. This is a significant redundancy. An improved alternative, where 28 is to be added for the genotype-phenotype mapping, could look like this:
decision variable: | ||||||||||||||
bits: | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
position: | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
with .
For the processing of tasks with real-valued or mixed-integer decision variables, EAs such as the evolution strategy [15] or the real-coded GAs [16] [17] [18] are suited. In the case of mixed-integer values, rounding is often used, but this represents some violation of the redundancy requirement. If the necessary precisions of the real values can be reasonably narrowed down, this violation can be remedied by using integer-coded GAs. [19] [20] For this purpose, the valid digits of real values are mapped to integers by multiplication with a suitable factor. For example, 12.380 becomes the integer 12380 by multiplying by 1000. This must of course be taken into account in genotype-phenotype mapping for evaluation and result presentation. A common form is a chromosome consisting of a list or an array of integer or real values.
Combinatorial problems are mainly concerned with finding an optimal sequence of a set of elementary items. As an example, consider the problem of the traveling salesman who wants to visit a given number of cities exactly once on the shortest possible tour. The simplest and most obvious mapping onto a chromosome is to number the cities consecutively, to interpret a resulting sequence as permutation and to store it directly in a chromosome, where one gene corresponds to the ordinal number of a city. [21] Then, however, the variation operators may only change the gene order and not remove or duplicate any genes. [22] The chromosome thus contains the path of a possible tour to the cities. As an example the sequence of nine cities may serve, to which the following chromosome corresponds:
3 | 5 | 7 | 1 | 4 | 2 | 9 | 6 | 8 |
In addition to this encoding frequently called path representation, there are several other ways of representing a permutation, for example the ordinal representation or the matrix representation. [22] [23]
When a genetic representation contains, in addition to the decision variables, additional information that influences evolution and/or the mapping of the genotype to the phenotype and is itself subject to evolution, this is referred to as co-evolution. A typical example is the evolution strategy (ES), which includes one or more mutation step sizes as strategy parameters in each chromosome. [15] Another example is an additional gene to control a selection heuristic for resource allocation in a scheduling tasks. [24]
This approach is based on the assumption that good solutions are based on an appropriate selection of strategy parameters or on control gene(s) that influences genotype-phenotype mapping. The success of the ES gives evidence to this assumption.
The chromosomes presented above are well suited for processing tasks of continuous, mixed-integer, pure-integer or combinatorial optimization. For a combination of these optimization areas, on the other hand, it becomes increasingly difficult to map them to simple strings of values, depending on the task. The following extension of the gene concept is proposed by the EA GLEAM (General Learning Evolutionary Algorithm and Method) for this purpose: [25] A gene is considered to be the description of an element or elementary trait of the phenotype, which may have multiple parameters. For this purpose, gene types are defined that contain as many parameters of the appropriate data type as are required to describe the particular element of the phenotype. A chromosome now consists of genes as data objects of the gene types, whereby, depending on the application, each gene type occurs exactly once as a gene or can be contained in the chromosome any number of times. The latter leads to chromosomes of dynamic length, as they are required for some problems. [26] [27] The gene type definitions also contain information on the permissible value ranges of the gene parameters, which are observed during chromosome generation and by corresponding mutations, so they cannot lead to lethal mutations. For tasks with a combinatorial part, there are suitable genetic operators that can move or reposition genes as a whole, i.e. with their parameters.
A scheduling task is used as an illustration, in which workflows are to be scheduled that require different numbers of heterogeneous resources. A workflow specifies which work steps can be processed in parallel and which have to be executed one after the other. In this context, heterogeneous resources mean different processing times at different costs in addition to different processing capabilities. [24] Each scheduling operation therefore requires one or more parameters that determine the resource selection, where the value ranges of the parameters depend on the number of alternative resources available for each work step. A suitable chromosome provides one gene type per work step and in this case one corresponding gene, which has one parameter for each required resource. The order of genes determines the order of scheduling operations and, therefore, the precedence in case of allocation conflicts. The exemplary gene type definition of work step 15 with two resources, for which there are four and seven alternatives respectively, would then look as shown in the left image. Since the parameters represent indices in lists of available resources for the respective work step, their value range starts at 0. The right image shows an example of three genes of a chromosome belonging to the gene types in list representation.
Tree representations in a chromosome are used by genetic programming, an EA type for generating computer programs or circuits. [10] The trees correspond to the syntax trees generated by a compiler as internal representation when translating a computer program. The adjacent figure shows the syntax tree of a mathematical expression as an example. Mutation operators can rearrange, change or delete subtrees depending on the represented syntax structure. Recombination is performed by exchanging suitable subtrees. [28]
In computer science and operations research, a genetic algorithm (GA) is a metaheuristic inspired by the process of natural selection that belongs to the larger class of evolutionary algorithms (EA). Genetic algorithms are commonly used to generate high-quality solutions to optimization and search problems via biologically inspired operators such as selection, crossover, and mutation. Some examples of GA applications include optimizing decision trees for better performance, solving sudoku puzzles, hyperparameter optimization, and causal inference.
An evolutionary algorithm (EA) in computational intelligence is a subset of evolutionary computation, a generic population-based metaheuristic optimization algorithm. An EA uses mechanisms inspired by biological evolution, such as reproduction, mutation, recombination and selection. Candidate solutions to the optimization problem play the role of individuals in a population, and the fitness function determines the quality of the solutions. Evolution of the population then takes place after the repeated application of the above operators.
Evolutionary computation from computer science is a family of algorithms for global optimization inspired by biological evolution, and the subfield of artificial intelligence and soft computing studying these algorithms. In technical terms, they are a family of population-based trial and error problem solvers with a metaheuristic or stochastic optimization character.
In evolutionary biology, fitness landscapes or adaptive landscapes are used to visualize the relationship between genotypes and reproductive success. It is assumed that every genotype has a well-defined replication rate. This fitness is the height of the landscape. Genotypes which are similar are said to be close to each other, while those that are very different are far from each other. The set of all possible genotypes, their degree of similarity, and their related fitness values is then called a fitness landscape. The idea of a fitness landscape is a metaphor to help explain flawed forms in evolution by natural selection, including exploits and glitches in animals like their reactions to supernormal stimuli.
A fitness function is a particular type of objective function that is used to summarise, as a single figure of merit, how close a given design solution is to achieving the set aims. Fitness functions are used in software architecture and evolutionary algorithms (EA), such as genetic programming and genetic algorithms to guide simulations towards optimal design solutions.
Neuroevolution, or neuro-evolution, is a form of artificial intelligence that uses evolutionary algorithms to generate artificial neural networks (ANN), parameters, and rules. It is most commonly applied in artificial life, general game playing and evolutionary robotics. The main benefit is that neuroevolution can be applied more widely than supervised learning algorithms, which require a syllabus of correct input-output pairs. In contrast, neuroevolution requires only a measure of a network's performance at a task. For example, the outcome of a game can be easily measured without providing labeled examples of desired strategies. Neuroevolution is commonly used as part of the reinforcement learning paradigm, and it can be contrasted with conventional deep learning techniques that use backpropagation with a fixed topology.
Crossover in evolutionary algorithms and evolutionary computation, also called recombination, is a genetic operator used to combine the genetic information of two parents to generate new offspring. It is one way to stochastically generate new solutions from an existing population, and is analogous to the crossover that happens during sexual reproduction in biology. Solutions can also be generated by cloning an existing solution, which is analogous to asexual reproduction. Newly generated solutions may be mutated before being added to the population.
Mutation is a genetic operator used to maintain genetic diversity of the chromosomes of a population of an evolutionary algorithm (EA), including genetic algorithms in particular. It is analogous to biological mutation.
Metaheuristic in computer science and mathematical optimization is a higher-level procedure or heuristic designed to find, generate, tune, or select a heuristic that may provide a sufficiently good solution to an optimization problem or a machine learning problem, especially with incomplete or imperfect information or limited computation capacity. Metaheuristics sample a subset of solutions which is otherwise too large to be completely enumerated or otherwise explored. Metaheuristics may make relatively few assumptions about the optimization problem being solved and so may be usable for a variety of problems. Their use is always of interest when exact or other (approximate) methods are not available or are not expedient, either because the calculation time is too long or because, for example, the solution provided is too imprecise.
Gene expression programming (GEP) in computer programming is an evolutionary algorithm that creates computer programs or models. These computer programs are complex tree structures that learn and adapt by changing their sizes, shapes, and composition, much like a living organism. And like living organisms, the computer programs of GEP are also encoded in simple linear chromosomes of fixed length. Thus, GEP is a genotype–phenotype system, benefiting from a simple genome to keep and transmit the genetic information and a complex phenotype to explore the environment and adapt to it.
Selection is the stage of a genetic algorithm or more general evolutionary algorithm in which individual genomes are chosen from a population for later breeding. Selection mechanisms are also used to choose candidate solutions (individuals) for the next generation. Retaining the best individuals in a generation unchanged in the next generation, is called elitism or elitist selection. It is a successful (slight) variant of the general process of constructing a new population.
Premature convergence means that a population in a evolutionary algorithm (EA) for an optimization problem converged too early, resulting in being suboptimal. In this context, the parental solutions, through the aid of genetic operators, are not able to generate offspring that are superior to, or outperform, their parents. Premature convergence is a common problem found in evolutionary algorithms in general and genetic algorithms in particular, as it leads to a loss, or convergence of, a large number of alleles, subsequently making it very difficult to search for a specific gene in which the alleles were present. An allele is considered lost if, in a population, a gene is present, where all individuals are sharing the same value for that particular gene. An allele is, as defined by De Jong, considered to be a converged allele, when 95% of a population share the same value for a certain gene.
The expression computational intelligence (CI) usually refers to the ability of a computer to learn a specific task from data or experimental observation. Even though it is commonly considered a synonym of soft computing, there is still no commonly accepted definition of computational intelligence.
Estimation of distribution algorithms (EDAs), sometimes called probabilistic model-building genetic algorithms (PMBGAs), are stochastic optimization methods that guide the search for the optimum by building and sampling explicit probabilistic models of promising candidate solutions. Optimization is viewed as a series of incremental updates of a probabilistic model, starting with the model encoding an uninformative prior over admissible solutions and ending with the model that generates only the global optima.
In computer programming, genetic representation is a way of presenting solutions/individuals in evolutionary computation methods. The term encompasses both the concrete data structures and data types used to realize the genetic material of the candidate solutions in the form of a genome, and the relationships between search space and problem space. In the simplest case, the search space corresponds to the problem space. The choice of problem representation is tied to the choice of genetic operators, both of which have a decisive effect on the efficiency of the optimization. Genetic representation can encode appearance, behavior, physical qualities of individuals. Difference in genetic representations is one of the major criteria drawing a line between known classes of evolutionary computation.
A memetic algorithm (MA) in computer science and operations research, is an extension of the traditional genetic algorithm (GA) or more general evolutionary algorithm (EA). It may provide a sufficiently good solution to an optimization problem. It uses a suitable heuristic or local search technique to improve the quality of solutions generated by the EA and to reduce the likelihood of premature convergence.
Grammatical evolution (GE) is a genetic programming (GP) technique (or approach) from evolutionary computation pioneered by Conor Ryan, JJ Collins and Michael O'Neill in 1998 at the BDS Group in the University of Limerick.
Meta-optimization from numerical optimization is the use of one optimization method to tune another optimization method. Meta-optimization is reported to have been used as early as in the late 1970s by Mercer and Sampson for finding optimal parameter settings of a genetic algorithm.
The population model of an evolutionary algorithm (EA) describes the structural properties of its population to which its members are subject. A population is the set of all proposed solutions of an EA considered in one iteration, which are also called individuals according to the biological role model. The individuals of a population can generate further individuals as offspring with the help of the genetic operators of the procedure.
Genotypic and phenotypic repair are optional parts of an evolutionary algorithm that repairs or compensates for errors in the genome of an offspring caused by crossover and/or mutation. Genotypic repair, also known as genetic repair, is the removal or correction of impermissible entries in the chromosome that violate restrictions. In phenotypic repair, the corrections are only made in the genotype-phenotype mapping and the chromosome remains unchanged.