Steppe mammoth

Last updated

Steppe mammoth
Temporal range: Early Pleistocene-Middle Pleistocene [1] 1.7–0.2  Ma
O
S
D
C
P
T
J
K
Pg
N
Possible Late Pleistocene records
Hohhot.Inner Mongolia Museum.Mammuthus Sungari.2.jpg
Skeleton
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Order: Proboscidea
Family: Elephantidae
Genus: Mammuthus
Species:
M. trogontherii
Binomial name
Mammuthus trogontherii
(Pohlig, 1885) [2]
Synonyms
  • Mammuthus armeniacusFalconer, 1857
  • Elephas trogontheriiPohlig, 1885
  • Euelephas protomammonteus Matsumoto, 1924
  • Mammuthus protomammonteus(Matsumoto, 1924)
  • Mammuthus sungariZhou, 1959
  • Mammuthus trogontherii chosaricusDubrovo, 1966

Mammuthus trogontherii, sometimes called the steppe mammoth, is an extinct species of mammoth that ranged over most of northern Eurasia during the Early and Middle Pleistocene, approximately 1.7 million to 200,000 years ago. The evolution of the steppe mammoth marked the initial adaptation of the mammoth lineage towards cold environments, with the species probably being covered in a layer of fur. One of the largest mammoth species, it evolved in East Asia during the Early Pleistocene, around 1.8 million years ago, before migrating into North America around 1.3 million years ago, and into Europe during the Early/Middle Pleistocene transition, around 1 to 0.7 million years ago (replacing the earlier mammoth species Mammuthus meridionalis ). It was the ancestor of the woolly mammoth and Columbian mammoth of the later Pleistocene (as well as the dwarf Sardinian mammoth Mammuthus lamarmorai ).

Contents

Taxonomy

There was historically confusion about the correct scientific name for the steppe mammoth, either Mammuthus armeniacus , named by Hugh Falconer in 1857 or Mammuthus trogontherii, named by Hans Pohlig in 1885. Falconer described M. armeniacus based on molar teeth collected from near Erzurum in eastern Turkey, of uncertain age, while Pohlig described M. trogontherii from fossil remains found in Europe. [3] A first taxonomical overhaul was done by Maglio (1973) who decided that both names were synonyms, armeniacus being the older, hence the preferred name. [4] However, in Shoshani & Tassy (1996) it was decided that the description of Pohlig prevailed, and consequently the correct name for the steppe mammoth is M. trogontherii. [5] The status of Mammuthus armeniacus as a synonym of Mammuthus trogontherii has been supported by most recent authors. [6] The type specimens of the species are molars from the Süssenborn (also spelled Süßenborn) locality in Germany, dating to the early Middle Pleistocene, (Marine Isotope Stage/MIS 16, approximately 676-621,000 years ago). [7]

Several Early Pleistocene Japanese mammoth species and subspecies (including Mammuthus protomammonteus, Mammuthus paramammonteus shigensis, Mammuthus meridionalis shigensis and Mammuthus meridionalis proximus) are now thought to be synonyms of M. trogontherii. [8] The species M. sungari named by Zhou 1959 from specimens found in Zalainuoer, Inner Mongolia, China, that was formerly widely used for mammoths in China is now also recognised as a synonym for M. trogontherii. [9]

Analysis of ancient DNA showing deep genetic divergences between early steppe-like mammoths in Siberia, dating around one million years ago, has led to questions about what material should be attributed to the species. In a 2024 review, Adrian Lister and Love Dalén argued that the species should be retained for now in a broad morphospecies sense for mammoth remains found across Eurasia. [10]

Description

Skeletal diagram of the 3.89 metre tall Zhalainuoer III specimen, including side on view (centre), top-down (above) and from the front minus the head (left) M. trogontherii skeletal (cropped).png
Skeletal diagram of the 3.89 metre tall Zhalainuoer III specimen, including side on view (centre), top-down (above) and from the front minus the head (left)
Size comparison of the fragmentary "Mosbach mammoth" estimated to be 4.5 metres tall. Mosbach mammoth.png
Size comparison of the fragmentary "Mosbach mammoth" estimated to be 4.5 metres tall.

Mammuthus trogontherii was one of the largest mammoth species, with males on average being about 4 m (13.1 ft) tall at the shoulders and about 11 tonnes (24,000 lb) in weight and females on average being about 3.7 m (12.1 ft) tall at the shoulders and about 9.5 tonnes (21,000 lb) in weight, considerably exceeding the size of modern elephants. [11] [1] A largely complete specimen (Zhalainuoer III) from Inner Mongolia, China, was estimated to have had a shoulder height of around 3.69 m (12.1 ft) measured at the top of the scapula, which represents a flesh shoulder height of 3.89 m (12.8 ft), with a body mass estimated via volumetric analysis at 10.4 tonnes (23,000 lb). [12] [11] A larger bull, (Azov I), estimated to be 3.96 m (13.0 ft) tall at the shoulder (previously erroneously estimated as 4.5 m (15 ft) due to incorrect mounting) was estimated to weigh 11.5 tonnes (25,000 lb) via volumetric analysis. Another individual represented by a single giant humerus 1.46 m (4.8 ft) long and an associated pelvis found in Mosbach Sande, Germany, is estimated to have had a shoulder height of 4.5 metres (14.8 ft) and a weight of 14.3 tonnes (32,000 lb) via regression analysis. [11] Steppe mammoths from the late Middle Pleistocene of Europe were considerably smaller than these "typical" M. trogontherii specimens, with the smallest M. trogontherii population being from Stanton Harcourt, England, dating to MIS 7 (around 200,000 years ago), among the last records of the species in Europe, [7] which have an estimated shoulder height of only 2.1–2.9 m (6.9–9.5 ft). [13]

Jaw with molar teeth Wikiraduno Bologna giugno 2023 - Museo di geologia Giovanni Capellini abc48.jpg
Jaw with molar teeth

The skull was high-domed and short, and bore twisted tusks. The lower jaw was short and deep. [12] The number of lamellae on the third molars is around 18–22, significantly higher than the number in earlier mammoth species, but noticeably lower than the number typically present in woolly mammoths (M. primigenius), though some European specimens of M. primigenius have counts which overlap with those of M. trogontherii. [7] Compared to M. primigenius, the teeth of calves of M. trogontherii were proportionally larger. [14] The body has around 19 thoracic vertebrae and 5 or 6 sacral vertebrae, with the first few thoracic vertebrae having long neural spines. [12] The tusks were proportionally large, among the largest known among proboscideans, with one large tusk from the Kostolac Basin in Serbia measuring 4.2 metres (14 ft) in length, with an estimated mass of 213 kilograms (470 lb). [15]

Sequenced genomes suggests that Early Pleistocene M. trogontherii specimens from Siberia, around 1 million years old, had already developed many of the genetic changes thought to be responsible for traits that were adaptations for living in cold environments characteristic of woolly mammoths. [16] Due to the cold climates it inhabited and short tail, Mammuthus trogontherii is suggested to have borne a coat of fur, which was probably somewhat thinner than that of the woolly mammoth. [12]

Distribution and habitat

Fossils of M. trogontherii are known from across northern Eurasia, spanning from Western Europe to Eastern Asia, and into the high latitudes of Northern Asia. [17] Among the southernmost records of the species are known from Taiwan and Miyako Island in the Ryukyu Islands, dating to around 700-500,000 years ago. The species is notably absent from adjacent mainland Southern China. [18] Steppe mammoths were often associated with cold open steppe environments, as its common name would suggest, but was not confined to them, as evidenced by the early Middle Pleistocene West Runton Mammoth specimen from Norfolk, England, which was associated with a temperate forested environment during an interglacial period. [19] In Central Europe, the steppe mammoth was common during glacial periods where it inhabited open landscapes, while remains of steppe mammoths are rare in the more temperate landscapes of Southern Europe. [20] At times during glacial periods the species expanded as far south in Europe as the Peloponnese in Greece and Andalusia in the Iberian Peninsula, though no records are known any farther south than Rome in the Italian Peninsula. [21] In Western Asia, remains are known from several sites across Anatolia in Turkey, [21] as well in the Caucasus in Armenia, [22] Georgia, and Azerbaijan. [23] Some remains of the species have been reported from the Levant in Syria and Israel, but their attribution to the species has been questioned. [21]

Ecology

Life restoration with a coat of fur Mammuthus trogontherii122DB.png
Life restoration with a coat of fur

Based on dental microwear analysis, steppe mammoths are thought to have been grazers to mixed feeders, having a similar dietary breadth to Mammuthus meridionalis though considerably more shifted toward grazing on average, and distinct from the predominantly grazing diet inferred for woolly mammoths. The presence of wide scratches on the teeth suggests that steppe mammoths consumed bark and twigs of woody plants (browse), though the proportion of this consumed seems to have varied widely between steppe mammoth populations, with some populations exhibiting browse-dominated mixed feeding, while others consumed little to no browse. The lack of pits on analysed teeth suggests that steppe mammoths did not consume fruit, unlike earlier mammoth species. [24]

Evolution

M. trogontherii is suggested to have derived from an early population of Mammuthus meridionalis in East Asia. The oldest records M. trogontherii are known from China, around 1.7 million years old, from the Nihewan Formation near Majuangou, Hebei. Steppe mammoths arrived in North America across Beringia around 1.5-1.3 million years ago, giving rise to the Columbian mammoth (the ancestor was previously thought to be M. meridionalis but this was due to misinterpretation of tooth wear patterns). [25] [16] Steppe mammoths replaced European Mammuthus meridionalis between 1–0.7 million years ago, in a complex diachronous mosaic pattern, coincident with the arrival of the temperate-adapted straight-tusked elephant (Palaeoloxodon antiquus) to Europe. [26] European populations of M. trogontherii experienced progressive size reduction towards the end of the Middle Pleistocene, from around 400,000-300,000 years ago onwards. [26] [7]

The woolly mammoth (Mammuthus primigenius) had emerged in Northeast Siberia from M. trogontherii by around 600-500,000 years ago, reaching the typical molar morphology of M. primigenius around 400,000 years ago. Mammoths with M. primigenius type molar morphology displaced those of M. trogontherii type in Europe over the course of the late Middle Pleistocene, which was largely complete by 200,000 years ago (~MIS 7/6 boundary) in a protracted highly complex pattern including some molars with intermediate morphology between the two species that likely reflects gene flow from Siberian woolly mammoths into European M. trogontherii. Some authors have given remains intermediate between M. trogontherii and M. primigenius the species names Mammuthus intermedius and Mammuthus chosaricus (sometimes Mammuthus trogontheriichosaricus), though the definitions of these supposed species are poorly defined, and some remains attributed to these forms are similar in enamel thickness and lamellar length to "classic" early Middle Pleistocene M.trogontherii. [7] The replacement of European M. trogontherii by woolly mammoths is widely considered to mark the extinction of the species, [16] though some authors have suggested that M. trogontherii survived in northern China and southern Siberia into the Last Glacial Period, and at least one specimen from China has been dated to between 40,000-30,000 years ago. [27] [9] [1]

M. trogontherii is suggested to be the ancestor of the dwarf mammoth species Mammuthus lamarmorai which inhabited the island of Sardinia in the Mediterranean during the late Middle Pleistocene and Late Pleistocene. [28]

Relationship with humans

At the Majuangou site in northern China, a M. trogontherii rib is suggested to display cutting marks. [9] At the Bełchatów coal mine in Poland, dating to the late Middle Pleistocene (in the interglacial period of either MIS 11 or MIS 9, around 425-300,000 years ago), remains of M. trogontherii have been found with cut marks, suggested to represent evidence of butchery by archaic humans, possibly Homo heidelbergensis, though no stone tools were found at the site. [29] Sites with evidence of both humans and M. trogontherii in Europe are rare, especially compared to the contemporaneous straight-tusked elephant, which is suggested to be the result of humans and steppe mammoths primarily occupying different habitats in Europe during the Middle Pleistocene. [20]

See also

Related Research Articles

<span class="mw-page-title-main">Mammoth</span> Extinct genus of mammals

A mammoth is any species of the extinct elephantid genus Mammuthus. They lived from the late Miocene epoch into the Holocene until about 4,000 years ago, with mammoth species at various times inhabiting Africa, Europe, Asia, and North America. Mammoths are distinguished from living elephants by their spirally twisted tusks and in at least some later species, the development of numerous adaptions to living in cold environments, including a thick layer of fur.

<span class="mw-page-title-main">Proboscidea</span> Order of mammals including elephants

Proboscidea is a taxonomic order of afrotherian mammals containing one living family (Elephantidae) and several extinct families. First described by J. Illiger in 1811, it encompasses the elephants and their close relatives. Three species of elephant are currently recognised: the African bush elephant, the African forest elephant, and the Asian elephant.

<span class="mw-page-title-main">Mastodon</span> Extinct genus of proboscideans

A mastodon is a member of the genus Mammut, which, strictly defined, was endemic to North America and lived from the late Miocene to the early Holocene. Mastodons belong to the order Proboscidea, the same order as elephants and mammoths. Mammut is the type genus of the extinct family Mammutidae, which diverged from the ancestors of modern elephants at least 27–25 million years ago, during the Oligocene.

<span class="mw-page-title-main">Elephantidae</span> Family of mammals

Elephantidae is a family of large, herbivorous proboscidean mammals collectively called elephants and mammoths. These are large terrestrial mammals with a snout modified into a trunk and teeth modified into tusks. Most genera and species in the family are extinct. Only two genera, Loxodonta and Elephas, are living.

<span class="mw-page-title-main">Mammutidae</span> Extinct family of mammals

Mammutidae is an extinct family of proboscideans belonging to Elephantimorpha. It is best known for the mastodons, which inhabited North America from the Late Miocene until their extinction at beginning of the Holocene, around 11,000 years ago. The earliest fossils of the group are known from the Late Oligocene of Africa, around 24 million years ago, and fossils of the group have also been found across Eurasia. The name "mastodon" derives from Greek, μαστός "nipple" and ὀδούς "tooth", referring to their characteristic teeth.

<i>Elephas</i> Genus of mammals

Elephas is one of two surviving genera in the family of elephants, Elephantidae, with one surviving species, the Asian elephant, Elephas maximus. Several extinct species have been identified as belonging to the genus, extending back to the Pliocene or possibly the late Miocene.

<i>Palaeoloxodon</i> Genus of extinct elephants

Palaeoloxodon is an extinct genus of elephant. The genus originated in Africa during the Early Pleistocene, and expanded into Eurasia at the beginning of the Middle Pleistocene. The genus contains the largest known species of elephants, over 4 metres (13 ft) tall at the shoulders and over 13 tonnes (29,000 lb) in weight, representing among the largest land mammals ever, including the African Palaeoloxodon recki, the European straight-tusked elephant and the South Asian Palaeoloxodon namadicus. P. namadicus has been suggested to be the largest known land mammal by some authors based on extrapolation from fragmentary remains, though these estimates are highly speculative. In contrast, the genus also contains many species of dwarf elephants that evolved via insular dwarfism on islands in the Mediterranean, some like Palaeoloxodon falconeri less than 1 metre (3.3 ft) in shoulder height as fully grown adults, making them the smallest elephants known. The genus has a long and complex taxonomic history, and at various times, it has been considered to belong to Loxodonta or Elephas, but today is usually considered a valid and separate genus in its own right.

<i>Stegodon</i> Genus of extinct proboscidean

Stegodon is an extinct genus of proboscidean, related to elephants. It was originally assigned to the family Elephantidae along with modern elephants but is now placed in the extinct family Stegodontidae. Like elephants, Stegodon had teeth with plate-like lophs that are different from those of more primitive proboscideans like gomphotheres and mammutids. Fossils of the genus are known from Africa and across much of Asia, as far southeast as Timor. The oldest fossils of the genus are found in Late Miocene strata in Asia, likely originating from the more archaic Stegolophodon, subsequently migrating into Africa. While the genus became extinct in Africa during the Pliocene, Stegodon persisted in South, Southeast and Eastern Asia into the Late Pleistocene.

<span class="mw-page-title-main">Gomphothere</span> Extinct family of proboscidean mammals

Gomphotheres are an extinct group of proboscideans related to modern elephants. First appearing in Africa during the Oligocene, they dispersed into Eurasia and North America during the Miocene and arrived in South America during the Pleistocene as part of the Great American Interchange. Gomphotheres are a paraphyletic group ancestral to Elephantidae, which contains modern elephants, as well as Stegodontidae.

<span class="mw-page-title-main">Dwarf elephant</span> Prehistoric elephant species

Dwarf elephants are prehistoric members of the order Proboscidea which, through the process of allopatric speciation on islands, evolved much smaller body sizes in comparison with their immediate ancestors. Dwarf elephants are an example of insular dwarfism, the phenomenon whereby large terrestrial vertebrates that colonize islands evolve dwarf forms, a phenomenon attributed to adaptation to resource-poor environments and lack of predation and competition.

<span class="mw-page-title-main">Columbian mammoth</span> Extinct species of mammoth that inhabited North America

The Columbian mammoth is an extinct species of mammoth that inhabited North America from southern Canada to Costa Rica during the Pleistocene epoch. The Columbian mammoth descended from Eurasian steppe mammoths that colonised North America during the Early Pleistocene around 1.5–1.3 million years ago, and later experienced hybridisation with the woolly mammoth lineage. The Columbian mammoth was among the last mammoth species, and the pygmy mammoths evolved from them on the Channel Islands of California. The closest extant relative of the Columbian and other mammoths is the Asian elephant.

<span class="mw-page-title-main">Chibanian</span> Stage of the Pleistocene Epoch

The Chibanian, more widely known as Middle Pleistocene, is an age in the international geologic timescale or a stage in chronostratigraphy, being a division of the Pleistocene Epoch within the ongoing Quaternary Period. The Chibanian name was officially ratified in January 2020. It is currently estimated to span the time between 0.770 Ma and 0.129 Ma, also expressed as 770–126 ka. It includes the transition in palaeoanthropology from the Lower to the Middle Paleolithic over 300 ka.

<span class="mw-page-title-main">Straight-tusked elephant</span> Extinct species of elephant native to Europe and West Asia

The straight-tusked elephant is an extinct species of elephant that inhabited Europe and Western Asia during the Middle and Late Pleistocene. One of the largest known elephant species, mature fully grown bulls on average had a shoulder height of 4 metres (13 ft) and a weight of 13 tonnes (29,000 lb). Straight-tusked elephants likely lived very similarly to modern elephants, with herds of adult females and juveniles and solitary adult males. The species was primarily associated with temperate and Mediterranean woodland and forest habitats, flourishing during interglacial periods, when its range would extend across Europe as far north as Great Britain and eastwards into Russia, while persisting in southern Europe during glacial periods. Skeletons found in association with stone tools and wooden spears suggest they were scavenged and hunted by early humans, including Homo heidelbergensis and their successors, the Neanderthals.

<i>Anancus</i> Genus of proboscideans

Anancus is an extinct genus of "tetralophodont gomphothere" native to Afro-Eurasia, that lived from the Tortonian stage of the late Miocene until its extinction during the Early Pleistocene, roughly from 8.5–2 million years ago.

<i>Mammuthus meridionalis</i> Extinct species of mammoth

Mammuthus meridionalis, sometimes called the southern mammoth, is an extinct species of mammoth native to Eurasia, including Europe, during the Early Pleistocene, living from around 2.5 million years ago to 800,000 years ago.

<i>Mammuthus lamarmorai</i> Extinct species of mammal

Mammuthus lamarmorai is a species of dwarf mammoth which lived during the late Middle and Late Pleistocene on the island of Sardinia in the Mediterranean. It has been estimated to have had a shoulder height of around 1.4 metres (4.6 ft). Remains have been found across the western part of the island.

<i>Mammuthus africanavus</i> Species of mammoth known from northern and central Africa (fossil)

Mammuthus africanavus is a species of mammoth known from remains spanning the Late Pliocene-Early Pleistocene found in Central and North Africa in the countries of Chad, Morocco, Tunisia and Algeria. It was originally described by Camille Arambourg in 1952 based on remains found around Lake Ichkeul in north Tunisia as a species of Elephas. Some specimens from this sample may genuinely represent Elephas rather than Mammuthus, though the holotype has been argued to likely represent a true mammoth. Some authors have argued that the species should be placed in Loxodonta, reflecting the difficulty in distinguishing the teeth of early elephantids. It is distinguished from the earlier Mammuthus subplanifrons by having a higher number of ridges/lamellae on the teeth, which display a greater parallelity, the molars being more hypsodont, with the molars having a greater amount of cementum and thinner enamel, and the molar plates exhibit closer spacing.

<span class="mw-page-title-main">Woolly mammoth</span> Extinct elephant-like species

The woolly mammoth is an extinct species of mammoth that lived from the Middle Pleistocene until its extinction in the Holocene epoch. It was one of the last in a line of mammoth species, beginning with the African Mammuthus subplanifrons in the early Pliocene. The woolly mammoth began to diverge from the steppe mammoth about 800,000 years ago in Siberia. Its closest extant relative is the Asian elephant. The Columbian mammoth lived alongside the woolly mammoth in North America, and DNA studies show that the two hybridised with each other. Mammoth remains had long been known in Asia before they became known to Europeans. The origin of these remains was long a matter of debate and often explained as being remains of legendary creatures. The mammoth was identified as an extinct species of elephant by Georges Cuvier in 1796.

Mammuthus rumanus is a species of mammoth that lived during the Pliocene in Eurasia. It the oldest mammoth species known outside of Africa.

<i>Phanagoroloxodon</i> Extinct genus of mammals

Phanagoroloxodon is a genus of extinct elephant. It is known from one species, Phanagoroloxodon mammontoides, which is described from a partial skull from Russia, of probable Late Pliocene-Early Pleistocene age.

References

  1. 1 2 3 Larramendi, Asier; Palombo, Maria Rita; Marano, Federica (2017). "Reconstructing the life appearance of a Pleistocene giant: size, shape, sexual dimorphism and ontogeny of Palaeoloxodon antiquus (Proboscidea: Elephantidae) from Neumark-Nord 1 (Germany)" (PDF). Bollettino della Società Paleontologica Italiana (3): 299–317. doi:10.4435/BSPI.2017.29. ISSN   0375-7633. Archived from the original (PDF) on 2023-09-30. Retrieved 2023-10-29.
  2. Todd, N. E. (January 2010). "New Phylogenetic Analysis of the Family Elephantidae Based on Cranial-Dental Morphology". The Anatomical Record. 293 (1). Wiley-Liss, Inc.: 74–90. doi: 10.1002/ar.21010 . PMID   19937636.
  3. Albayrak, Ebru; Lister, Adrian M. (October 2012). "Dental remains of fossil elephants from Turkey". Quaternary International. 276–277: 198–211. Bibcode:2012QuInt.276..198A. doi:10.1016/j.quaint.2011.05.042.
  4. Maglio, V. J. (1973). "Origin and Evolution of the Elephantidae". Trans Am Philos Soc. 63 (3): 1–149. doi:10.2307/1006229. JSTOR   1006229.
  5. Shoshani, J.; Tassy, P., eds. (1996). The Proboscidea : Evolution and Palaeoecology of Elephants and Their Relatives. Oxford: Oxford University Press. ISBN   0-19-854652-1.
  6. Athanassiou, Athanassios (March 2012). "A skeleton of Mammuthus trogontherii (Proboscidea, Elephantidae) from NW Peloponnese, Greece". Quaternary International. 255: 9–28. Bibcode:2012QuInt.255....9A. doi:10.1016/j.quaint.2011.03.030.
  7. 1 2 3 4 5 Lister, Adrian M. (October 2022). "Mammoth evolution in the late Middle Pleistocene: The Mammuthus trogontherii-primigenius transition in Europe". Quaternary Science Reviews. 294: 107693. Bibcode:2022QSRv..29407693L. doi:10.1016/j.quascirev.2022.107693. S2CID   252264887.
  8. van de Greer, Alexandra; Lyras, George; de Vos, John; Dermitzakis, Michael (2011). "Japan". Evolution of Island Mammals: Adaptation and Extinction of Placental Mammals on Islands (in Danish and English). John Wiley & Sons. p. 240. ISBN   978-1444391282.
  9. 1 2 3 Wei, GuangBiao; Hu, SongMei; Yu, KeFu; Hou, YaMei; Li, Xin; Jin, ChangZhu; Wang, Yuan; Zhao, JianXin; Wang, WenHua (2010-06-09). "New materials of the steppe mammoth, Mammuthus trogontherii, with discussion on the origin and evolutionary patterns of mammoths". Science China Earth Sciences. 53 (7): 956–963. Bibcode:2010ScChD..53..956W. doi:10.1007/s11430-010-4001-4. ISSN   1674-7313. S2CID   129568366.
  10. Lister, Adrian; Dalén, Love (2024). "Mammoths, molecules and morphology: A case study in ancient speciation". Palaeontologia Electronica. doi:10.26879/1419.
  11. 1 2 3 Larramendi, A. (2016). "Shoulder height, body mass and shape of proboscideans" (PDF). Acta Palaeontologica Polonica. 61. doi: 10.4202/app.00136.2014 .
  12. 1 2 3 4 Larramendi, Asier (June 2015). "Skeleton of a Late Pleistocene steppe mammoth (Mammuthus trogontherii) from Zhalainuoer, Inner Mongolian Autonomous Region, China". Paläontologische Zeitschrift. 89 (2): 229–250. Bibcode:2015PalZ...89..229L. doi:10.1007/s12542-014-0222-8. ISSN   0031-0220.
  13. Scott, Katharine; Buckingham, Christine (2021). Mammoths and Neanderthals in the Thames Valley. Archaeopress. p. 59.
  14. Tong, Hao-Wen; Chen, Xi (June 2016). "On newborn calf skulls of Early Pleistocene Mammuthus trogontherii from Shanshenmiaozui in Nihewan Basin, China". Quaternary International. 406: 57–69. Bibcode:2016QuInt.406...57T. doi:10.1016/j.quaint.2015.02.026.
  15. Larramendi, Asier (2023-12-10). "Estimating tusk masses in proboscideans: a comprehensive analysis and predictive model". Historical Biology: 1–14. doi:10.1080/08912963.2023.2286272. ISSN   0891-2963.
  16. 1 2 3 van der Valk, Tom; Pečnerová, Patrícia; Díez-del-Molino, David; Bergström, Anders; Oppenheimer, Jonas; Hartmann, Stefanie; Xenikoudakis, Georgios; Thomas, Jessica A.; Dehasque, Marianne; Sağlıcan, Ekin; Fidan, Fatma Rabia (17 February 2021). "Million-year-old DNA sheds light on the genomic history of mammoths". Nature. 591 (7849): 265–269. Bibcode:2021Natur.591..265V. doi:10.1038/s41586-021-03224-9. ISSN   1476-4687. PMC   7116897 . PMID   33597750.
  17. Kahlke, Ralf-Dietrich (July 2014). "The origin of Eurasian Mammoth Faunas (Mammuthus–Coelodonta Faunal Complex)". Quaternary Science Reviews. 96: 32–49. Bibcode:2014QSRv...96...32K. doi:10.1016/j.quascirev.2013.01.012.
  18. Kawamura, Ai; Chang, Chun-Hsiang; Kawamura, Yoshinari (March 2016). "Middle Pleistocene to Holocene mammal faunas of the Ryukyu Islands and Taiwan: An updated review incorporating results of recent research". Quaternary International. 397: 117–135. Bibcode:2016QuInt.397..117K. doi:10.1016/j.quaint.2015.06.044.
  19. Lister, Adrian M.; Stuart, Anthony J. (December 2010). "The West Runton mammoth (Mammuthus trogontherii) and its evolutionary significance". Quaternary International. 228 (1–2): 180–209. Bibcode:2010QuInt.228..180L. doi:10.1016/j.quaint.2010.07.032.
  20. 1 2 Konidaris, George E.; Tourloukis, Vangelis (2021-04-14). "Proboscidea-Homo interactions in open-air localities during the Early and Middle Pleistocene of western Eurasia: a palaeontological and archaeolocigal perspective". Human-Elephant Interactions: From Past to Present. doi:10.15496/publikation-55599.
  21. 1 2 3 Athanassiou, Athanassios (26 March 2012). "A skeleton of Mammuthus trogontherii (Proboscidea, Elephantidae) from NW Peloponnese, Greece". Quaternary International. 255: 9–28. doi:10.1016/j.quaint.2011.03.030.
  22. Tesakov, Alexey; Simakova, Alexandra; Frolov, Pavel; Sytchevskaya, Eugenia; Syromyatnikova, Elena; Foronova, Irina; Shalaeva, Eugenia; Trifonov, Vladimir (2019). "Early-Middle Pleistocene environmental and biotic transition in NW Armenia, southern Caucasus". Palaeontologia Electronica. doi:10.26879/916.
  23. Bukhsianidze, Maia; Koiava, Kakhaber (2018). "Synopsis of the terrestrial vertebrate faunas from the Middle Kura Basin (Eastern Georgia and Western Azerbaijan, South Caucasus)". Acta Palaeontologica Polonica. 63. doi:10.4202/app.00499.2018.
  24. Rivals, Florent; Semprebon, Gina M.; Lister, Adrian M. (September 2019). "Feeding traits and dietary variation in Pleistocene proboscideans: A tooth microwear review". Quaternary Science Reviews. 219: 145–153. Bibcode:2019QSRv..219..145R. doi:10.1016/j.quascirev.2019.06.027. S2CID   200073388.
  25. Lister, A. M.; Sher, A. V. (2015-11-13). "Evolution and dispersal of mammoths across the Northern Hemisphere". Science. 350 (6262): 805–809. Bibcode:2015Sci...350..805L. doi:10.1126/science.aac5660. ISSN   0036-8075. PMID   26564853. S2CID   206639522.
  26. 1 2 Lister, Adrian M.; Sher, Andrei V.; van Essen, Hans; Wei, Guangbiao (January 2005). "The pattern and process of mammoth evolution in Eurasia" (PDF). Quaternary International. 126–128: 49–64. Bibcode:2005QuInt.126...49L. doi:10.1016/j.quaint.2004.04.014. ISSN   1040-6182.
  27. Shpansky, Andrei V; Kuzmin, Yaroslav V (April 2021). "Chronology of the MIS 3 megafauna in southeastern West Siberia and the possibility of late survival of the Khosarian steppe mammoth (Mammuthus trogontherii chosaricus)". Radiocarbon. 63 (2): 575–584. Bibcode:2021Radcb..63..575S. doi:10.1017/RDC.2021.6. ISSN   0033-8222.
  28. Palombo, Maria Rita; Zedda, Marco; Zoboli, Daniel (March 2024). "The Sardinian Mammoth's Evolutionary History: Lights and Shadows". Quaternary. 7 (1): 10. doi: 10.3390/quat7010010 . ISSN   2571-550X.
  29. Haynes, Gary (March 2022). "Late Quaternary Proboscidean Sites in Africa and Eurasia with Possible or Probable Evidence for Hominin Involvement". Quaternary. 5 (1): 18. doi: 10.3390/quat5010018 . ISSN   2571-550X.

Further reading