Elephantidae

Last updated

Elephantidae
Temporal range: Late Miocene–Holocene
Elephas maximus (Bandipur).jpg
A male Asian elephant (Elephas maximus) in the wild at Bandipur National Park in India
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Order: Proboscidea
Superfamily: Elephantoidea
Family: Elephantidae
Gray, 1821
Type genus
Elephas
Genera [1]
Synonyms [4]
  • Elephasidae Lesson, 1842

Elephantidae is a family of large, herbivorous proboscidean mammals collectively called elephants and mammoths. In some cases, all members of the family can be referred to as elephants. [5] [6] [7] [8] They are large terrestrial mammals with a snout modified into a trunk and teeth modified into tusks. Most genera and species in the family are extinct. Only two genera, Loxodonta (African elephants) and Elephas (Asian elephants), are living.

Contents

The family was first described by John Edward Gray in 1821, [9] and later assigned to taxonomic ranks within the order Proboscidea. Elephantidae has been revised by various authors to include or exclude other extinct proboscidean genera.

Description

Elephantids are distinguished from more primitive proboscideans like gomphotheres by their teeth, which have parallel lophs, formed from the merger of the cusps found in the teeth of more primitive proboscideans, which are bound by cementum. [10] In later elephantids, these lophs became narrow lamellae, [11] with the number of lophs/lamellae per tooth, as well as the tooth crown height (hypsodonty) increasing over time. [12] Elephantids chew using a proal jaw movement involving a forward stroke of the lower jaws, different from the oblique movement using side to side motion of the jaws in more primitive proboscideans. [13] The most primitive elephantid Stegotetrabelodon had a long lower jaw with lower tusks and retained permanent premolars similar to many gomphotheres, while modern elephantids lack permanent premolars, with the lower jaw being shortened (brevirostrine) and lower tusks being absent. [12] Elephantids are typically sexually dimorphic, with substantially larger males, with an accelerated growth rate over a longer period of time than females. Elephantidae contains some of the largest known proboscideans, with fully-grown males of some species of mammoths and Palaeoloxodon having average body masses of 11 tonnes (24,000 lb) and 13 tonnes (29,000 lb) respectively, making them among the largest terrestrial mammals ever. One species of Palaeoloxodon, Palaeoloxodon namadicus , has been suggested to have been possibly the largest land mammal of all time, though this remains speculative due to the fragmentary nature of known remains. [14] In comparison to more primitive elephantimorphs like gomphotheres, the bodies of elephantids tend to be proportionally shorter from front to back, as well having more elongate limbs with more slender limb bones. [15]

Classification

Phylogeny of recent and Late Pleistocene elephantid species, including Palaeoloxodon and mammoths, showing the hybridisation between African forest elephants and Palaeoloxodon, after Palkopoulou et al. 2018 Palaeoloxodon phylogeny.svg
Phylogeny of recent and Late Pleistocene elephantid species, including Palaeoloxodon and mammoths, showing the hybridisation between African forest elephants and Palaeoloxodon, after Palkopoulou et al. 2018
"Man, and the elephant" plate from Hawkins's A comparative view of the human and animal frame, 1860 Comparative view of the human and elephant frame, Benjamin Waterhouse Hawkins, 1860.jpg
"Man, and the elephant" plate from Hawkins's A comparative view of the human and animal frame, 1860
Skeleton of Mammuthus meridionalis at the French Museum of Natural History Mammuthus meridionalis.JPG
Skeleton of Mammuthus meridionalis at the French Museum of Natural History

Some authors have suggested to classify the family into two subfamilies, Stegotetrabelodontinae, which is monotypic, only containing Stegotetrabelodon, and Elephantinae, containing all other elephantids. [12] Recent genetic research has indicated that Elephas and Mammuthus are more closely related to each other than to Loxodonta , with Palaeoloxodon closely related to Loxodonta. Palaeoloxodon also appears to have received extensive hybridisation with the African forest elephant, and to a lesser extent with mammoths. [16]

Living species

Classification

Evolutionary history

Evolution of elephants from the ancient Eocene (bottom) to the modern day (top) ElephEvol.jpg
Evolution of elephants from the ancient Eocene (bottom) to the modern day (top)

Elephantids are thought to have evolved from gomphotheres, with some authors proposing the most likely ancestors to be African species of the "tetralophodont gomphothere" Tetralophodon . [17] The earliest members of the family, are known from the Late Miocene, around 9–10 million years ago. [18] The modern genera of elephants and mammoths had diverged from each other by the end of the Miocene, around 5 million years ago. Elephantids began to migrate out of Africa during the Pliocene, with mammoths and Elephas arriving in Eurasia around 3–3.8 million years ago. [19] Around 1.5 million years ago, mammoths migrated into North America. [20] At the end of the Early Pleistocene, around 0.8 million years ago, Palaeoloxodon migrated out of Africa, becoming widespread across Eurasia, from Western Europe to Japan. [21] Palaeoloxodon and Mammuthus became extinct during the Late Pleistocene-Holocene, with the last population of mammoths persisting on Wrangel Island until around 4,000 years ago. [22]

See also

Related Research Articles

<span class="mw-page-title-main">Mammoth</span> Extinct genus of mammals

A mammoth is any species of the extinct elephantid genus Mammuthus. They lived from the late Miocene epoch into the Holocene until about 4,000 years ago, with mammoth species at various times inhabiting Africa, Asia, Europe, and North America. Mammoths are distinguished from living elephants by their spirally twisted tusks and in at least some later species, the development of numerous adaptions to living in cold environments, including a thick layer of fur.

<span class="mw-page-title-main">Proboscidea</span> Order of mammals including elephants

Proboscidea is a taxonomic order of afrotherian mammals containing one living family (Elephantidae) and several extinct families. First described by J. Illiger in 1811, it encompasses the elephants and their close relatives. Three species of elephant are currently recognised: the African bush elephant, the African forest elephant, and the Asian elephant.

<span class="mw-page-title-main">Mastodon</span> Extinct genus of proboscideans

A mastodon is a member of the genus Mammut, which was endemic to North America and lived from the late Miocene to the early Holocene. Mastodons belong to the order Proboscidea, the same order as elephants and mammoths. Mammut is the type genus of the extinct family Mammutidae, which diverged from the ancestors of modern elephants at least 27–25 million years ago, during the Oligocene.

<span class="mw-page-title-main">Mammutidae</span> Extinct family of mammals

Mammutidae is an extinct family of proboscideans belonging to Elephantimorpha. It is best known for the mastodons, which inhabited North America from the Late Miocene until their extinction at beginning of the Holocene, around 11,000 years ago. The earliest fossils of the group are known from the Late Oligocene of Africa, around 24 million years ago, and fossils of the group have also been found across Eurasia. The name "mastodon" derives from Greek, μαστός "nipple" and ὀδούς "tooth", referring to their characteristic teeth.

<i>Elephas</i> Genus of mammals

Elephas is one of two surviving genera in the family of elephants, Elephantidae, with one surviving species, the Asian elephant, Elephas maximus. Several extinct species have been identified as belonging to the genus, extending back to the Pliocene or possibly the late Miocene.

<i>Palaeoloxodon</i> Genus of extinct elephants

Palaeoloxodon is an extinct genus of elephant. The genus originated in Africa during the Early Pleistocene, and expanded into Eurasia at the beginning of the Middle Pleistocene. The genus contains the largest known species of elephants, over 4 metres (13 ft) tall at the shoulders and over 13 tonnes (29,000 lb) in weight, representing among the largest land mammals ever, including the African Palaeoloxodon recki, the European straight-tusked elephant and the South Asian Palaeoloxodon namadicus. P. namadicus has been suggested to be the largest known land mammal by some authors based on extrapolation from fragmentary remains, though these estimates are highly speculative. In contrast, the genus also contains many species of dwarf elephants that evolved via insular dwarfism on islands in the Mediterranean, some like Palaeoloxodon falconeri less than 1 metre (3.3 ft) in shoulder height as fully grown adults, making them the smallest elephants known. The genus has a long and complex taxonomic history, and at various times, it has been considered to belong to Loxodonta or Elephas, but today is usually considered a valid and separate genus in its own right.

<span class="mw-page-title-main">Gomphothere</span> Extinct family of proboscidean mammals

Gomphotheres are an extinct group of proboscideans related to modern elephants. First appearing in Africa during the Oligocene, they dispersed into Eurasia and North America during the Miocene and arrived in South America during the Pleistocene as part of the Great American Interchange. Gomphotheres are a paraphyletic group ancestral to Elephantidae, which contains modern elephants, as well as Stegodontidae.

<i>Palaeoloxodon recki</i> Extinct species of elephant

Palaeoloxodon recki, often known by the synonym Elephas recki, is an extinct species of elephant native to Africa and West Asia from the Pliocene or Early Pleistocene to the Middle Pleistocene. During most of its existence, the species represented the dominant elephant species in East Africa. The species is divided into five roughly chronologically successive subspecies. While the type and latest subspecies P. recki recki as well as the preceding P. recki ileretensis are widely accepted to be closely related and ancestral to Eurasian Palaeoloxodon, the relationships of the other, chronologically earlier subspecies to P. recki recki, P. recki ileretensis and Palaeoloxodon are uncertain, with it being suggested they are unrelated and should be elevated to separate species.

<span class="mw-page-title-main">Straight-tusked elephant</span> Extinct species of elephant native to Europe and West Asia

The straight-tusked elephant is an extinct species of elephant that inhabited Europe and Western Asia during the Middle and Late Pleistocene. One of the largest known elephant species, mature fully grown bulls on average had a shoulder height of 4 metres (13 ft) and a weight of 13 tonnes (29,000 lb). Straight-tusked elephants likely lived very similarly to modern elephants, with herds of adult females and juveniles and solitary adult males. The species was primarily associated with temperate and Mediterranean woodland and forest habitats, flourishing during interglacial periods, when its range would extend across Europe as far north as Great Britain and Denmark and eastwards into Russia, while persisting in southern Europe during glacial periods. Skeletons found in association with stone tools and in one case, a wooden spear, suggest they were scavenged and hunted by early humans, including Homo heidelbergensis and their Neanderthal successors.

<i>Gomphotherium</i> Extinct genus of elephant-like mammals

Gomphotherium is an extinct genus of gomphothere proboscidean from the Neogene of Eurasia, Africa and North America. It is the most diverse genus of gompothere, with over a dozen valid species. The genus is probably paraphyletic.

<i>Anancus</i> Genus of proboscideans

Anancus is an extinct genus of "tetralophodont gomphothere" native to Afro-Eurasia, that lived from the Tortonian stage of the late Miocene until its extinction during the Early Pleistocene, roughly from 8.5–2 million years ago.

<i>Mammuthus meridionalis</i> Extinct species of mammoth

Mammuthus meridionalis, sometimes called the southern mammoth, is an extinct species of mammoth native to Eurasia, including Europe, during the Early Pleistocene, living from around 2.5 million years ago to 800,000 years ago.

<span class="mw-page-title-main">Steppe mammoth</span> Extinct species of mammoth

Mammuthus trogontherii, sometimes called the steppe mammoth, is an extinct species of mammoth that ranged over most of northern Eurasia during the Early and Middle Pleistocene, approximately 1.7 million to 200,000 years ago. The evolution of the steppe mammoth marked the initial adaptation of the mammoth lineage towards cold environments, with the species probably being covered in a layer of fur. One of the largest mammoth species, it evolved in East Asia during the Early Pleistocene, around 1.8 million years ago, before migrating into North America around 1.3 million years ago, and into Europe during the Early/Middle Pleistocene transition, around 1 to 0.7 million years ago. It was the ancestor of the woolly mammoth and Columbian mammoth of the later Pleistocene.

<i>Mammuthus africanavus</i> Species of mammoth known from northern and central Africa (fossil)

Mammuthus africanavus is a species of mammoth known from remains spanning the Late Pliocene-Early Pleistocene found in Central and North Africa in the countries of Chad, Morocco, Tunisia and Algeria. It was originally described by Camille Arambourg in 1952 based on remains found around Lake Ichkeul in north Tunisia as a species of Elephas. Some specimens from this sample may genuinely represent Elephas rather than Mammuthus, though the holotype has been argued to likely represent a true mammoth. Some authors have argued that the species should be placed in Loxodonta, reflecting the difficulty in distinguishing the teeth of early elephantids. It is distinguished from the earlier Mammuthus subplanifrons by having a higher number of ridges/lamellae on the teeth, which display a greater parallelity, the molars being more hypsodont, with the molars having a greater amount of cementum and thinner enamel, and the molar plates exhibit closer spacing.

<i>Stegotetrabelodon</i> Extinct genus of primitive elephantid from the late Miocene to early Pliocene Africa and Eurasia

Stegotetrabelodon is an extinct genus of primitive elephantid from the Late Miocene to Early Pliocene of Africa, the Arabian Peninsula, and Italy.

<i>Tetralophodon</i> Extinct genus of mammals

Tetralophodon is an extinct genus of "tetralophodont gomphothere" belonging to the superfamily Elephantoidea, known from the Miocene of Afro-Eurasia.

<i>Primelephas</i> Extinct genus of mammals

Primelephas is a genus of Elephantinae that existed during the Miocene and Pliocene epochs. The name of the genus suggests 'first elephant'. These primitive elephantids are thought to be the common ancestor of Mammuthus, the mammoths, and the closely allied genera Elephas and Loxodonta, the Asian and African elephants, diverging some 4-6 million years ago. It had four tusks, which is a trait not shared with its descendants, but common in earlier proboscideans. The type species, Primelephas gomphotheroides, was described by Vincent Maglio in 1970, with the specific epithet indicating the fossil specimens were gomphothere-like. Primelephas korotorensis is the only other species to be assigned to the genus. All fossils found of the Primelephas have been found in Africa, primarily in modern day Chad, Tanzania, Kenya, Ethiopia, and Uganda.

<span class="mw-page-title-main">Stegodontidae</span> Family of extinct elephant-like mammals

Stegodontidae is an extinct family of proboscideans from Africa and Asia from the Early Miocene to the Late Pleistocene. It contains two genera, the earlier Stegolophodon, known from the Miocene of Asia and the later Stegodon, from the Late Miocene to Late Pleistocene of Africa and Asia which is thought to have evolved from the former. The group is noted for their plate-like lophs on their teeth, which are similar to elephants and different from those of other extinct proboscideans like gomphotheres and mammutids, with both groups having a proal jaw movement utilizing forward strokes of the lower jaw. These similarities with modern elephants were probably convergently evolved. Like elephantids, stegodontids are thought to have evolved from gomphothere ancestors.

<i>Stegoloxodon</i> Extinct genus of dwarf elephant

Stegoloxodon is an extinct genus of dwarf elephant known from the Early Pleistocene of Indonesia. It contains two species, S. indonesicus from Java, and S. celebensis from Sulawesi. Its relationship with other elephants is uncertain.

<i>Phanagoroloxodon</i> Extinct genus of elephantid

Phanagoroloxodon is a genus of extinct elephant. It is known from one species, Phanagoroloxodon mammontoides, which is described from a partial skull from Russia, of probable Late Pliocene-Early Pleistocene age.

References

  1. Shoshani, J.; Ferretti, M.P.; Lister, A.M.; Agenbroad, L.D.; Saegusa, H.; Mol, D.; Takahashi, K. (2007). "Relationships within the Elephantinae using hyoid characters". Quaternary International. 169–170: 174–185. Bibcode:2007QuInt.169..174S. doi:10.1016/j.quaint.2007.02.003.
  2. H. T. Mackaye, M. Brunet, and P. Tassy. 2005. Selenetherium kolleensis nov. gen. nov. sp.: un nouveau Proboscidea (Mammalia) dans le Pliocène tchadien. Geobios 38(6):765-777
  3. Kalb, J. E.; & Froehlich, D. J. (1995). "Interrelationships of Late Neogene Elephantoids: New evidence from the Middle Awash Valley, Afar, Ethiopia". Geobios. 28 (6): 727–736. Bibcode:1995Geobi..28..727K. doi:10.1016/s0016-6995(95)80068-9.
  4. Maglio, Vincent J. (1973). "Origin and Evolution of the Elephantidae". Transactions of the American Philosophical Society. 63 (3): 16. doi:10.2307/1006229. JSTOR   1006229.
  5. "Discrimination of ivory from extant andextinct elephant species using Raman spectroscopy: A potential non-destructive technique for combating illegal wildlife trade". April 24, 2024.
  6. E. Todd, Nancy (28 December 2009). "New Phylogenetic Analysis of the Family Elephantidae Based on Cranial-Dental Morphology".
  7. Osterloff, Emily. "Were all mammoths woolly?". Natural History Museum.
  8. J. Maglio, Vincent (January 1, 1973). Origin and Evolution of the Elephantidae. The American Philosophical Society Press. ISBN   9798893981513.
  9. Gray, John Edward (1821). "On the natural arrangement of vertebrose animals". London Medical Repository. 15: 297–310.
  10. Lister, Adrian M. (2013-06-26). "The role of behaviour in adaptive morphological evolution of African proboscideans". Nature. 500 (7462): 331–334. Bibcode:2013Natur.500..331L. doi:10.1038/nature12275. ISSN   0028-0836. PMID   23803767. S2CID   883007.
  11. Saarinen, Juha; Lister, Adrian M. (2023-08-14). "Fluctuating climate and dietary innovation drove ratcheted evolution of proboscidean dental traits". Nature Ecology & Evolution. 7 (9): 1490–1502. Bibcode:2023NatEE...7.1490S. doi:10.1038/s41559-023-02151-4. ISSN   2397-334X. PMC   10482678 . PMID   37580434.
  12. 1 2 3 Athanassiou, Athanassios (2022), Vlachos, Evangelos (ed.), "The Fossil Record of Continental Elephants and Mammoths (Mammalia: Proboscidea: Elephantidae) in Greece", Fossil Vertebrates of Greece Vol. 1, Cham: Springer International Publishing, pp. 345–391, doi:10.1007/978-3-030-68398-6_13, ISBN   978-3-030-68397-9, S2CID   245067102 , retrieved 2023-11-21
  13. Saegusa, Haruo (March 2020). "Stegodontidae and Anancus: Keys to understanding dental evolution in Elephantidae". Quaternary Science Reviews. 231: 106176. Bibcode:2020QSRv..23106176S. doi:10.1016/j.quascirev.2020.106176. S2CID   214094348.
  14. Larramendi, A. (2016). "Shoulder height, body mass and shape of proboscideans" (PDF). Acta Palaeontologica Polonica. 61. doi: 10.4202/app.00136.2014 . S2CID   2092950.
  15. Bader, Camille; Delapré, Arnaud; Göhlich, Ursula B.; Houssaye, Alexandra (November 2024). "Diversity of limb long bone morphology among proboscideans: how to be the biggest one in the family". Papers in Palaeontology. 10 (6). doi: 10.1002/spp2.1597 . ISSN   2056-2799.
  16. Palkopoulou, Eleftheria; Lipson, Mark; Mallick, Swapan; Nielsen, Svend; Rohland, Nadin; Baleka, Sina; Karpinski, Emil; Ivancevic, Atma M.; To, Thu-Hien; Kortschak, R. Daniel; Raison, Joy M. (2018-03-13). "A comprehensive genomic history of extinct and living elephants". Proceedings of the National Academy of Sciences. 115 (11): E2566 –E2574. Bibcode:2018PNAS..115E2566P. doi: 10.1073/pnas.1720554115 . ISSN   0027-8424. PMC   5856550 . PMID   29483247.
  17. Geraads, Denis; Zouhri, Samir; Markov, Georgi N. (2019-05-04). "The first Tetralophodon (Mammalia, Proboscidea) cranium from Africa". Journal of Vertebrate Paleontology. 39 (3): e1632321. Bibcode:2019JVPal..39E2321G. doi:10.1080/02724634.2019.1632321. ISSN   0272-4634. S2CID   202024016.
  18. H. Saegusa, H. Nakaya, Y. Kunimatsu, M. Nakatsukasa, H. Tsujikawa, Y. Sawada, M. Saneyoshi, T. Sakai Earliest elephantid remains from the late Miocene locality, Nakali, Kenya Scientific Annals, School of Geology, Aristotle University of Thessaloniki, Greece VIth International Conference on Mammoths and Their Relatives, vol. 102, Grevena -Siatista, special volume (2014), p. 175
  19. Iannucci, Alessio; Sardella, Raffaele (March 2023). "What Does the "Elephant-Equus" Event Mean Today? Reflections on Mammal Dispersal Events around the Pliocene-Pleistocene Boundary and the Flexible Ambiguity of Biochronology". Quaternary. 6 (1): 16. doi: 10.3390/quat6010016 . hdl: 11573/1680082 . ISSN   2571-550X.
  20. Lister, A. M.; Sher, A. V. (November 13, 2015). "Evolution and dispersal of mammoths across the Northern Hemisphere". Science. 350 (6262): 805–809. Bibcode:2015Sci...350..805L. doi:10.1126/science.aac5660. PMID   26564853. S2CID   206639522.
  21. Lister, Adrian M. (2004), "Ecological Interactions of Elephantids in Pleistocene Eurasia", Human Paleoecology in the Levantine Corridor, Oxbow Books, pp. 53–60, ISBN   978-1-78570-965-4 , retrieved 2020-04-14
  22. Arppe, Laura; Karhu, Juha A.; Vartanyan, Sergey; Drucker, Dorothée G.; Etu-Sihvola, Heli; Bocherens, Hervé (October 2019). "Thriving or surviving? The isotopic record of the Wrangel Island woolly mammoth population". Quaternary Science Reviews. 222: 105884. Bibcode:2019QSRv..22205884A. doi:10.1016/j.quascirev.2019.105884. hdl: 10138/309133 . S2CID   203103403.