Palaeoloxodon namadicus

Last updated

Palaeoloxodon namadicus
Temporal range: Middle Pleistocene–Late Pleistocene
O
S
D
C
P
T
J
K
Pg
N
Palaeoloxodon namadicus.JPG
Skull at the Indian Museum, Kolkata
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Order: Proboscidea
Family: Elephantidae
Genus: Palaeoloxodon
Species:
P. namadicus
Binomial name
Palaeoloxodon namadicus
(Falconer & Cautley, 1846)

Palaeoloxodon namadicus is an extinct species of prehistoric elephant known from the Middle Pleistocene to Late Pleistocene of the Indian subcontinent, and possibly also elsewhere in Asia. The species grew larger than any living elephant, and some authors have suggested it to have been the largest known land mammal based on extrapolation from fragmentary remains, though these estimates are speculative.

Contents

Description

Fragmentary skull of a female individual, showing parieto-occipital crest at the top of the skull Fauna antiqua sivalensis Plate 12A (1847) (cropped).jpg
Fragmentary skull of a female individual, showing parieto-occipital crest at the top of the skull

Some authorities historically regarded P. namadicus and the European straight-tusked elephant (P. antiquus) as the same species due to their similar skull morphology. [1] P. namadicus shares similarities to other species of Palaeoloxodon, which includes a large growth of bone (the parieto-occipital crest) at the top of the skull that overhangs the forehead region, which likely served anchored the splenius muscles used to support the head. This structure is more developed in males than in females. Recent research has suggested that P. namadicus can be distinguished from P. antiquus by its less robust (more elongate) limb bones and more stout cranium (including a better developed parieto-occipital crest), and the presence of a teardrop shaped indentation/depression in the infraorbital region behind the eyesocket not found in P. antiquus. [2] Like other large Palaeoloxodon species, the tusks were likely proportionally large, though no complete tusks are known. One partial tusk was estimated to be 3.66 metres (12.0 ft) long and over 120 kilograms (260 lb) in weight when complete, larger than the largest recorded African bush elephant tusk. [3]

Size

Size comparison of the Sagauni 1 specimen, estimated to be 4.35 metres tall, compared to a human Namadicus size comparison.png
Size comparison of the Sagauni 1 specimen, estimated to be 4.35 metres tall, compared to a human

Palaeoloxodon namadicus is the largest species in the genus Palaeoloxodon and one of the largest known proboscideans, and considerably larger than living elephants. A 2015 study by Asier Larramendi attempted to estimate the size of P. namadicus, as well as other prehistoric proboscideans. Based on a fragmentary skeleton of an adult male, comprising two femurs (the left one of which was measured to be around 1.6 metres (5.2 ft) in length when excavated in 1834), a left ulna and a right humerus, from Sagauni in Narsinghpur district, Madhya Pradesh, Larramendi extrapolated a shoulder height of 4.35 metres (14.3 ft) and a weight of 13 tonnes (29,000 lb) for this individual. [4]

A fragmentary lower portion of a femur described in 1834 in the same publication that described the femurs of the Sagauni specimen, stated that this femur was almost a quarter larger than that from Sagauni. Assuming it was about 20% larger, Larramendi calculated an extrapolated femur length of 1.9 metres (6.2 ft) and a speculative size estimate of 5.2 metres (17.1 ft) tall at the shoulder and 22 tonnes (49,000 lb) in body mass, which if correct would make P. namadicus possibly the largest land mammal ever, exceeding even paraceratheres in size. However, Larramendi stated that is estimate should be "taken with a grain of salt" (treated with caution), as they could not locate the specimen, but speculated that it may be stored in the Indian Museum of Kolkata. [4]

Highly speculative size estimate of P. namadicus based on a lost partial femur measured in the 19th century, compared to a paracerathere Largest land mammals size chart.jpg
Highly speculative size estimate of P. namadicus based on a lost partial femur measured in the 19th century, compared to a paracerathere

In 2023, a publication by Gregory S. Paul and Larramendi estimated that another specimen identified as cf. P. namadicus, also only known from a partial femur, would have weighed 18–19 tonnes (40,000–42,000 lb). [5] Other authors have noted that weight estimates for proboscideans based on single bones can lead to estimates that are "highly improbable" compared to accurate estimates from complete skeletons. [6] In 2024, Biswas, Chang and Tsai estimated a maximum shoulder height of over 4.5 metres (15 ft) and suggested that the body mass for 5 measured specimens ranged from 13.2 to 18.5 tonnes (29,000 to 41,000 lb). [7]

Ecology

Life restoration Palaeoloxodon namadicus-bpk.jpg
Life restoration

Fossils of Palaeoloxodon namadicus are known from the northern and central Indian subcontinent, including the Narmada and Godavari valleys, and the Indo-Gangetic Plain. [8] Based on stable isotope ratios of carbon and oxygen and the morphology of their teeth, it is suggested that P. namadicus tended had a grazing-mixed feeding diet, [9] [10] with a specimen found on the banks of the Dhasan River suggested to have primarily consumed C4 grasses. [10] The species is suggested to have primarily inhabited open grassland habitats. [9] [10] Its arrival on the subcontinent coincides with a shift in the diet of contemporaneous Elephas hysudricus (the ancestor of the living Asian elephant) from a grazing diet towards browsing-mixed feeding, possibly as a result of niche partitioning. [9]

Evolution and extinction

P. namadicus is primarily known from the Indian subcontinent. [2] Remains attributed to P. namadicus have also been reported across Southeast Asia (including Malaysia, Myanmar, Laos, and Vietnam, and the island of Sulawesi in Indonesia) and as well as China. [11] [12] However, the status of Chinese Palaeoloxodon is unresolved, with other authors considering the remains to belong to P. naumanni (otherwise known from Japan) or the separate species P. huaihoensis . The postcranial remains of Palaeoloxodon from China are substantially more robust than Indian P. namadicus and in many respects are more similar to those of P. antiquus and their skulls lack the infraorbital depression characteristic of Indian P. namadicus specimens, making their referral to P. namadicus questionable. [2]

P. namadicus is thought to have ultimately evolved, like other Eurasian Palaeoloxodon species from a migration of a population of Palaeoloxodon recki out of Africa. [13] The earliest records of Palaeoloxodon in the Indian subcontinent are uncertain, though date to sometime in the Middle Pleistocene, with most remains of Palaeoloxodon in the Indian subcontinent from the late Middle Pleistocene onwards having the characteristic skull morphology of P. namadicus. [14] Palaeoloxodon namadicus is thought to have become extinct during the Late Pleistocene, making it one of four megafauna species native to the Indian subcontinent suggested to have become extinct during the Late Pleistocene, alongside fellow proboscidean Stegodon namadicus , the equine Equus namadicus , and the hippopotamus Hexaprotodon, along with the local extinction of ostriches, as part of a global wave of megafaunal extinctions during the Late Pleistocene. [15] [16] The exact time of extinction of these taxa is unclear due to the uncertainties regarding dating, but indirect dating from several sites suggests that P. namadicus became extinct within the last 50,000 years, with some records possibly as late as 25,000 years ago, implying that P. namadicus overlapped with modern humans in the region. [16] [15]

Relationship with humans

There is little direct evidence for human interaction with P. namadicus. A site in the Kashmir valley where a member of the genus Palaeoloxodon was found with deliberately fractured bones associated with stone tools [17] has been attributed to the species P. turkmenicus rather than to P. namadicus. [14]

Related Research Articles

<span class="mw-page-title-main">Mammoth</span> Extinct genus of mammals

A mammoth is any species of the extinct elephantid genus Mammuthus. They lived from the late Miocene epoch into the Holocene until about 4,000 years ago, with mammoth species at various times inhabiting Africa, Asia, Europe, and North America. Mammoths are distinguished from living elephants by their spirally twisted tusks and in at least some later species, the development of numerous adaptions to living in cold environments, including a thick layer of fur.

<span class="mw-page-title-main">Proboscidea</span> Order of mammals including elephants

Proboscidea is a taxonomic order of afrotherian mammals containing one living family (Elephantidae) and several extinct families. First described by J. Illiger in 1811, it encompasses the elephants and their close relatives. Three species of elephant are currently recognised: the African bush elephant, the African forest elephant, and the Asian elephant.

<span class="mw-page-title-main">Elephantidae</span> Family of mammals

Elephantidae is a family of large, herbivorous proboscidean mammals collectively called elephants and mammoths. These are large terrestrial mammals with a snout modified into a trunk and teeth modified into tusks. Most genera and species in the family are extinct. Only two genera, Loxodonta and Elephas, are living.

<i>Elephas</i> Genus of mammals

Elephas is one of two surviving genera in the family of elephants, Elephantidae, with one surviving species, the Asian elephant, Elephas maximus. Several extinct species have been identified as belonging to the genus, extending back to the Pliocene or possibly the late Miocene.

<i>Palaeoloxodon</i> Genus of extinct elephants

Palaeoloxodon is an extinct genus of elephant. The genus originated in Africa during the Early Pleistocene, and expanded into Eurasia at the beginning of the Middle Pleistocene. The genus contains the largest known species of elephants, over 4 metres (13 ft) tall at the shoulders and over 13 tonnes (29,000 lb) in weight, representing among the largest land mammals ever, including the African Palaeoloxodon recki, the European straight-tusked elephant and the South Asian Palaeoloxodon namadicus. P. namadicus has been suggested to be the largest known land mammal by some authors based on extrapolation from fragmentary remains, though these estimates are highly speculative. In contrast, the genus also contains many species of dwarf elephants that evolved via insular dwarfism on islands in the Mediterranean, some like Palaeoloxodon falconeri less than 1 metre (3.3 ft) in shoulder height as fully grown adults, making them the smallest elephants known. The genus has a long and complex taxonomic history, and at various times, it has been considered to belong to Loxodonta or Elephas, but today is usually considered a valid and separate genus in its own right.

<i>Stegodon</i> Genus of extinct proboscidean

Stegodon is an extinct genus of proboscidean, related to elephants. It was originally assigned to the family Elephantidae along with modern elephants but is now placed in the extinct family Stegodontidae. Like elephants, Stegodon had teeth with plate-like lophs that are different from those of more primitive proboscideans like gomphotheres and mammutids. Fossils of the genus are known from Africa and across much of Asia, as far southeast as Timor. The oldest fossils of the genus are found in Late Miocene strata in Asia, likely originating from the more archaic Stegolophodon, subsequently migrating into Africa. While the genus became extinct in Africa during the Pliocene, Stegodon persisted in South, Southeast and Eastern Asia into the Late Pleistocene.

<span class="mw-page-title-main">Dwarf elephant</span> Prehistoric elephant species

Dwarf elephants are prehistoric members of the order Proboscidea which, through the process of allopatric speciation on islands, evolved much smaller body sizes in comparison with their immediate ancestors. Dwarf elephants are an example of insular dwarfism, the phenomenon whereby large terrestrial vertebrates that colonize islands evolve dwarf forms, a phenomenon attributed to adaptation to resource-poor environments and lack of predation and competition.

<i>Palaeoloxodon recki</i> Extinct species of elephant

Palaeoloxodon recki, often known by the synonym Elephas recki, is an extinct species of elephant native to Africa and West Asia from the Pliocene or Early Pleistocene to the Middle Pleistocene. During most of its existence, the species represented the dominant elephant species in East Africa. The species is divided into five roughly chronologically successive subspecies. While the type and latest subspecies P. recki recki as well as the preceding P. recki ileretensis are widely accepted to be closely related and ancestral to Eurasian Palaeoloxodon, the relationships of the other, chronologically earlier subspecies to P. recki recki, P. recki ileretensis and Palaeoloxodon are uncertain, with it being suggested they are unrelated and should be elevated to separate species.

<span class="mw-page-title-main">Straight-tusked elephant</span> Extinct species of elephant native to Europe and West Asia

The straight-tusked elephant is an extinct species of elephant that inhabited Europe and Western Asia during the Middle and Late Pleistocene. One of the largest known elephant species, mature fully grown bulls on average had a shoulder height of 4 metres (13 ft) and a weight of 13 tonnes (29,000 lb). Straight-tusked elephants likely lived very similarly to modern elephants, with herds of adult females and juveniles and solitary adult males. The species was primarily associated with temperate and Mediterranean woodland and forest habitats, flourishing during interglacial periods, when its range would extend across Europe as far north as Great Britain and Denmark and eastwards into Russia, while persisting in southern Europe during glacial periods. Skeletons found in association with stone tools and wooden spears suggest they were scavenged and hunted by early humans, including Homo heidelbergensis and their Neanderthal successors.

<i>Anancus</i> Genus of proboscideans

Anancus is an extinct genus of "tetralophodont gomphothere" native to Afro-Eurasia, that lived from the Tortonian stage of the late Miocene until its extinction during the Early Pleistocene, roughly from 8.5–2 million years ago.

<i>Palaeoloxodon falconeri</i> Extinct species of elephant

Palaeoloxodon falconeri is an extinct species of dwarf elephant from the Middle Pleistocene of Sicily and Malta. It is amongst the smallest of all dwarf elephants at under 1 metre (3.3 ft) in height. A member of the genus Palaeoloxodon, it derived from a population of the mainland European straight-tusked elephant.

<i>Mammuthus meridionalis</i> Extinct species of mammoth

Mammuthus meridionalis, sometimes called the southern mammoth, is an extinct species of mammoth native to Eurasia, including Europe, during the Early Pleistocene, living from around 2.5 million years ago to 800,000 years ago.

<span class="mw-page-title-main">Steppe mammoth</span> Extinct species of mammoth

Mammuthus trogontherii, sometimes called the steppe mammoth, is an extinct species of mammoth that ranged over most of northern Eurasia during the Early and Middle Pleistocene, approximately 1.7 million to 200,000 years ago. The evolution of the steppe mammoth marked the initial adaptation of the mammoth lineage towards cold environments, with the species probably being covered in a layer of fur. One of the largest mammoth species, it evolved in East Asia during the Early Pleistocene, around 1.8 million years ago, before migrating into North America around 1.3 million years ago, and into Europe during the Early/Middle Pleistocene transition, around 1 to 0.7 million years ago. It was the ancestor of the woolly mammoth and Columbian mammoth of the later Pleistocene.

<i>Sinomastodon</i> Extinct genus of gomphothere proboscidean

Sinomastodon is an extinct gomphothere genus known from the Late Miocene to Early Pleistocene of Asia, including China, Japan, Thailand, Myanmar, Indonesia and probably Kashmir.

<i>Palaeoloxodon cypriotes</i> Extinct species of dwarf elephant native to Cyprus

Palaeoloxodon cypriotes is an extinct species of dwarf elephant that inhabited the island of Cyprus during the Late Pleistocene. A probable descendant of the large straight-tusked elephant of mainland Europe and West Asia, the species is among the smallest known dwarf elephants, with fully grown individuals having an estimated shoulder height of only 1 metre (3.3 ft). It represented only one of two large animal species on the island alongside the Cypriot pygmy hippopotamus. The species became extinct around 12,000 years ago, around the time humans first colonised Cyprus, and potential evidence of human hunting has been found.

<i>Elephas hysudricus</i> Extinct species of mammal

Elephas hysudricus is an extinct elephant species known from the Pleistocene of Asia. It is thought to be ancestral to the living Asian elephant, from which it is distinguished by the molar teeth having a lower crown height and a lower lamellae number. Remains of the species are primarily known from the Indian subcontinent, with the most important remains coming from the Siwalik Hills. The oldest remains of the species in the Siwaliks are placed at around 2.6 million year ago at the beginning of the Early Pleistocene, with the youngest dates in the Siwaliks during the Middle Pleistocene around 0.6 million years ago, though it likely persisted on the subcontinent later than this based on remains found elsewhere.

<i>Palaeoloxodon mnaidriensis</i> Extinct species of elephant

Palaeoloxodon mnaidriensis is an extinct species of dwarf elephant belonging to the genus Palaeoloxodon, native to the Siculo-Maltese archipelago during the late Middle Pleistocene and Late Pleistocene. It is derived from the European mainland straight-tusked elephant.

<i>Palaeoloxodon naumanni</i> Extinct species of elephant native to Japan

Palaeoloxodon naumanni is an extinct species of elephant belonging to the genus Palaeoloxodon that was native to the Japanese archipelago during the Middle to Late Pleistocene around 330,000 to 24,000 years ago. It is named after the German geologist Heinrich Edmund Naumann who first described remains of the species in the late 19th century, with the species sometimes being called Naumann's elephant. Fossils attributed to P. naumanni are also known from China, though the status of these specimens is unresolved, and some authors regard them as belonging to separate species.

<i>Palaeoloxodon huaihoensis</i> Extinct species of elephant native to China

Palaeoloxodon huaihoensis is an extinct species of elephant belonging to the genus Palaeoloxodon known from the Pleistocene of China.

<i>Palaeoloxodon turkmenicus</i> Extinct species of mammal

Palaeoloxodon turkmenicus is an extinct species of elephant belonging to the genus Palaeoloxodon, known from the Middle Pleistocene of Central Asia and South Asia.

References

  1. Ferretti, M.P. (May 2008). "The dwarf elephant Palaeoloxodon mnaidriensis from Puntali Cave, Carini (Sicily; late Middle Pleistocene): Anatomy, systematics and phylogenetic relationships". Quaternary International. 182 (1): 90–108. Bibcode:2008QuInt.182...90F. doi:10.1016/j.quaint.2007.11.003.
  2. 1 2 3 Larramendi, Asier; Zhang, Hanwen; Palombo, Maria Rita; Ferretti, Marco P. (February 2020). "The evolution of Palaeoloxodon skull structure: Disentangling phylogenetic, sexually dimorphic, ontogenetic, and allometric morphological signals". Quaternary Science Reviews. 229: 106090. Bibcode:2020QSRv..22906090L. doi:10.1016/j.quascirev.2019.106090. S2CID   213676377.
  3. Larramendi, Asier (2023-12-10). "Estimating tusk masses in proboscideans: a comprehensive analysis and predictive model". Historical Biology: 1–14. doi:10.1080/08912963.2023.2286272. ISSN   0891-2963.
  4. 1 2 Larramendi, Asier (2015). "Proboscideans: Shoulder Height, Body Mass and Shape". Acta Palaeontologica Polonica. doi: 10.4202/app.00136.2014 .
  5. Paul, Gregory S.; Larramendi, Asier (June 9, 2023). "Body mass estimate of Bruhathkayosaurus and other fragmentary sauropod remains suggest the largest land animals were about as big as the greatest whales". Lethaia. 56 (2): 1–11. Bibcode:2023Letha..56..2.5P. doi:10.18261/let.56.2.5 . Retrieved June 9, 2023.
  6. Romano, Marco; Bellucci, Luca; Antonelli, Matteo; Manucci, Fabio; Palombo, Maria Rita (2023-06-13). "Body mass estimate of Anancus arvernensis (Croizet and Jobert 1828): comparison of the regression and volumetric methods". Journal of Quaternary Science. 38 (8): 1357–1381. Bibcode:2023JQS....38.1357R. doi:10.1002/jqs.3549. ISSN   0267-8179.
  7. Biswas, Deep Shubhra; Chang, Chun-Hsiang; Tsai, Cheng-Hsiu (July 2024). "Land of the giants: Body mass estimates of Palaeoloxodon from the Pleistocene of Taiwan". Quaternary Science Reviews. 336: 108761. Bibcode:2024QSRv..33608761B. doi: 10.1016/j.quascirev.2024.108761 . Supplementary Data
  8. Ghosh, Rupa; Sehgal, R. K.; Srivastava, Pradeep; Shukla, U. K.; Nanda, A. C.; Singh, D. S. (November 2016). "Discovery of Elephas cf. namadicus from the late Pleistocene strata of Marginal Ganga Plain". Journal of the Geological Society of India. 88 (5): 559–568. doi:10.1007/s12594-016-0521-7. ISSN   0016-7622.
  9. 1 2 3 Patnaik, Rajeev; Singh, Ningthoujam Premjit; Paul, Debajyoti; Sukumar, Raman (2019-11-15). "Dietary and habitat shifts in relation to climate of Neogene-Quaternary proboscideans and associated mammals of the Indian subcontinent". Quaternary Science Reviews. 224: 105968. Bibcode:2019QSRv..22405968P. doi:10.1016/j.quascirev.2019.105968. ISSN   0277-3791. S2CID   210307849.
  10. 1 2 3 Maurya, Sakshi; Ghosh, Rupa; Sehgal, Ramesh Kumar; Srivastava, Pradeep; Shukla, Uma Kant; Singh, Abhishek Pratap; Sarangi, Shushanta (September 2022). "Stable Isotopic studies of the herbivorous mammals from the Marginal Ganga Plain, India: implication for the palaeo-environmental reconstruction". Geological Journal. 57 (9): 3935–3948. doi:10.1002/gj.4522. ISSN   0072-1050.
  11. Louys, Julien; Curnoe, Darren; Tong, Haowen (January 2007). "Characteristics of Pleistocene megafauna extinctions in Southeast Asia". Palaeogeography, Palaeoclimatology, Palaeoecology. 243 (1–2): 152–173. Bibcode:2007PPP...243..152L. doi:10.1016/j.palaeo.2006.07.011.
  12. Geer, Alexandra A. E.; Bergh, Gerrit D.; Lyras, George A.; Prasetyo, Unggul W.; Due, Rokus Awe; Setiyabudi, Erick; Drinia, Hara (August 2016). "The effect of area and isolation on insular dwarf proboscideans". Journal of Biogeography. 43 (8): 1656–1666. Bibcode:2016JBiog..43.1656V. doi:10.1111/jbi.12743. ISSN   0305-0270. S2CID   87958022.
  13. Lister, Adrian M. (2004), "Ecological Interactions of Elephantids in Pleistocene Eurasia", Human Paleoecology in the Levantine Corridor, Oxbow Books, pp. 53–60, ISBN   978-1-78570-965-4 , retrieved 2020-04-14
  14. 1 2 Jukar, Advait M.; Bhat, Ghulam; Parfitt, Simon; Ashton, Nick; Dickinson, Marc; Zhang, Hanwen; Dar, A. M.; Lone, M. S.; Thusu, Bindra; Craig, Jonathan (2024-10-11). "A remarkable Palaeoloxodon (Mammalia, Proboscidea) skull from the intermontane Kashmir Valley, India". Journal of Vertebrate Paleontology. doi:10.1080/02724634.2024.2396821. ISSN   0272-4634.
  15. 1 2 Jukar, A.M.; Lyons, S.K.; Wagner, P.J.; Uhen, M.D. (January 2021). "Late Quaternary extinctions in the Indian Subcontinent". Palaeogeography, Palaeoclimatology, Palaeoecology. 562: 110137. Bibcode:2021PPP...56210137J. doi: 10.1016/j.palaeo.2020.110137 . S2CID   228877664.
  16. 1 2 Turvey, Samuel T.; Sathe, Vijay; Crees, Jennifer J.; Jukar, Advait M.; Chakraborty, Prateek; Lister, Adrian M. (January 2021). "Late Quaternary megafaunal extinctions in India: How much do we know?". Quaternary Science Reviews. 252: 106740. Bibcode:2021QSRv..25206740T. doi:10.1016/j.quascirev.2020.106740. S2CID   234265221.
  17. Bhat, Ghulam M.; Ashton, Nick; Parfitt, Simon; Jukar, Advait; Dickinson, Marc R.; Thusu, Bindra; Craig, Jonathan (October 2024). "Human exploitation of a straight-tusked elephant (Palaeoloxodon) in Middle Pleistocene deposits at Pampore, Kashmir, India". Quaternary Science Reviews. 342: 108894. doi: 10.1016/j.quascirev.2024.108894 .