Sequential game

Last updated
Chess is an example of a sequential game. Final Position of Lawrence-Tan 2002.png
Chess is an example of a sequential game.

In game theory, a sequential game is a game where one player chooses their action before the others choose theirs. [1] The other players must have information on the first player's choice so that the difference in time has no strategic effect. Sequential games are governed by the time axis and represented in the form of decision trees.

Sequential games with perfect information can be analysed mathematically using combinatorial game theory.

Decision trees are the extensive form of dynamic games that provide information on the possible ways that a given game can be played. They show the sequence in which players act and the number of times that they can each make a decision. Decision trees also provide information on what each player knows or does not know at the point in time they decide on an action to take. Payoffs for each player are given at the decision nodes of the tree. Extensive form representations were introduced by Neumann and further developed by Kuhn in the earliest years of game theory between 1910–1930. [2]

Repeated games are an example of sequential games. Players perform a stage game and the results will determine how the game continues. At every new stage, both players will have complete information on how the previous stages had played out. A discount rate between the values of 0 and 1 is usually taken into account when considering the payoff of each player. Repeated games illustrate the psychological aspect of games, such as trust and revenge, when each player makes a decision at every stage game based on how the game has been played out so far. [2]

Unlike sequential games, simultaneous games do not have a time axis so players choose their moves without being sure of the other players' decisions. Simultaneous games are usually represented in the form of payoff matrices. One example of a simultaneous game is rock-paper-scissors, where each player draws at the same time not knowing whether their opponent will choose rock, paper, or scissors. Extensive form representations are typically used for sequential games, since they explicitly illustrate the sequential aspects of a game. Combinatorial games are also usually sequential games.

Games such as chess, infinite chess, backgammon, tic-tac-toe and Go are examples of sequential games. The size of the decision trees can vary according to game complexity, ranging from the small game tree of tic-tac-toe, to an immensely complex game tree of chess so large that even computers cannot map it completely. [3]

Games can be either strictly determined or determined. A strictly determined game only has one individually rational payoff profile in the 'pure' sense. For a game to be determined it can have only one individually rational payoff profile in the mixed sense. [4]

In sequential games with perfect information, a subgame perfect equilibrium can be found by backward induction. [5]

See also

Related Research Articles

Game theory is the study of mathematical models of strategic interactions among rational agents. It has applications in all fields of social science, as well as in logic, systems science and computer science. The concepts of game theory are used extensively in economics as well. The traditional methods of game theory addressed two-person zero-sum games, in which each participant's gains or losses are exactly balanced by the losses and gains of other participants. In the 21st century, the advanced game theories apply to a wider range of behavioral relations; it is now an umbrella term for the science of logical decision making in humans, animals, as well as computers.

In game theory, the Nash equilibrium, named after the mathematician John Nash, is the most common way to define the solution of a non-cooperative game involving two or more players. In a Nash equilibrium, each player is assumed to know the equilibrium strategies of the other players, and no one has anything to gain by changing only one's own strategy. The principle of Nash equilibrium dates back to the time of Cournot, who in 1838 applied it to competing firms choosing outputs.

In the context of Combinatorial game theory, which typically studies sequential games with perfect information, a game tree is a graph representing all possible game states within such a game. Such games include well-known ones such as chess, checkers, Go, and tic-tac-toe. This can be used to measure the complexity of a game, as it represents all the possible ways a game can pan out. Due to the large game trees of complex games such as chess, algorithms that are designed to play this class of games will use partial game trees, which makes computation feasible on modern computers. Various methods exist to solve game trees. If a complete game tree can be generated, a deterministic algorithm, such as backward induction or retrograde analysis can be used. Randomized algorithms and minimax algorithms such as MCTS can be used in cases where a complete game tree is not feasible.

<span class="mw-page-title-main">Combinatorial game theory</span> Branch of game theory about two-player sequential games with perfect information

Combinatorial game theory is a branch of mathematics and theoretical computer science that typically studies sequential games with perfect information. Study has been largely confined to two-player games that have a position that the players take turns changing in defined ways or moves to achieve a defined winning condition. Combinatorial game theory has not traditionally studied games of chance or those that use imperfect or incomplete information, favoring games that offer perfect information in which the state of the game and the set of available moves is always known by both players. However, as mathematical techniques advance, the types of game that can be mathematically analyzed expands, thus the boundaries of the field are ever changing. Scholars will generally define what they mean by a "game" at the beginning of a paper, and these definitions often vary as they are specific to the game being analyzed and are not meant to represent the entire scope of the field.

<span class="mw-page-title-main">Perfect information</span> Condition in economics and game theory

In economics, perfect information is a feature of perfect competition. With perfect information in a market, all consumers and producers have complete and instantaneous knowledge of all market prices, their own utility, and own cost functions.

In game theory, the centipede game, first introduced by Robert Rosenthal in 1981, is an extensive form game in which two players take turns choosing either to take a slightly larger share of an increasing pot, or to pass the pot to the other player. The payoffs are arranged so that if one passes the pot to one's opponent and the opponent takes the pot on the next round, one receives slightly less than if one had taken the pot on this round, but after an additional switch the potential payoff will be higher. Therefore, although at each round a player has an incentive to take the pot, it would be better for them to wait. Although the traditional centipede game had a limit of 100 rounds, any game with this structure but a different number of rounds is called a centipede game.

In game theory, a player's strategy is any of the options which they choose in a setting where the outcome depends not only on their own actions but on the actions of others. The discipline mainly concerns the action of a player in a game affecting the behavior or actions of other players. Some examples of "games" include chess, bridge, poker, monopoly, diplomacy or battleship. A player's strategy will determine the action which the player will take at any stage of the game. In studying game theory, economists enlist a more rational lens in analyzing decisions rather than the psychological or sociological perspectives taken when analyzing relationships between decisions of two or more parties in different disciplines.

In game theory, the battle of the sexes is a two-player coordination game that also involves elements of conflict. The game was introduced in 1957 by R. Duncan Luce and Howard Raiffa in their classic book, Games and Decisions. Some authors prefer to avoid assigning sexes to the players and instead use Players 1 and 2, and some refer to the game as Bach or Stravinsky, using two concerts as the two events. The game description here follows Luce and Raiffa's original story.

In game theory, an extensive-form game is a specification of a game allowing for the explicit representation of a number of key aspects, like the sequencing of players' possible moves, their choices at every decision point, the information each player has about the other player's moves when they make a decision, and their payoffs for all possible game outcomes. Extensive-form games also allow for the representation of incomplete information in the form of chance events modeled as "moves by nature". Extensive-form representations differ from normal-form in that they provide a more complete description of the game in question, whereas normal-form simply boils down the game into a payoff matrix.

<span class="mw-page-title-main">Information set (game theory)</span>

The information set is the basis for decision making in a game, which includes the actions available to both sides and the benefits of each action.The information set is an important concept in non-perfect games. In game theory, an information set is the set of all possible actions in the game for a given player, built on their observations and a set for a particular player that, given what that player has observed, shows the decision vertices available to the player which are undistinguishable to them at the current point in the game. For a better idea on decision vertices, refer to Figure 1. If the game has perfect information(The total knowledge possessed by a market participant of the state of an economic environment), every information set contains only one member, namely the point actually reached at that stage of the game, since each player knows the exact mix of chance moves and player strategies up to the current point in the game. Otherwise, it is the case that some players cannot be sure exactly what has taken place so far in the game and what their position is(what should they do).

In game theory, a Perfect Bayesian Equilibrium (PBE) is an equilibrium concept relevant for dynamic games with incomplete information. It is a refinement of Bayesian Nash equilibrium (BNE). A perfect Bayesian equilibrium has two components -- strategies and beliefs:

Backward induction is the process of reasoning backwards in time, from the end of a problem or situation, to determine a sequence of optimal actions. It proceeds by examining the last point at which a decision is to be made and then identifying what action would be most optimal at that moment. Using this information, one can then determine what to do at the second-to-last time of decision. This process continues backwards until one has determined the best action for every possible situation at every point in time. Backward induction was first used in 1875 by Arthur Cayley, who uncovered the method while trying to solve the infamous Secretary problem.

In game theory, folk theorems are a class of theorems describing an abundance of Nash equilibrium payoff profiles in repeated games. The original Folk Theorem concerned the payoffs of all the Nash equilibria of an infinitely repeated game. This result was called the Folk Theorem because it was widely known among game theorists in the 1950s, even though no one had published it. Friedman's (1971) Theorem concerns the payoffs of certain subgame-perfect Nash equilibria (SPE) of an infinitely repeated game, and so strengthens the original Folk Theorem by using a stronger equilibrium concept: subgame-perfect Nash equilibria rather than Nash equilibria.

In game theory, a repeated game is an extensive form game that consists of a number of repetitions of some base game. The stage game is usually one of the well-studied 2-person games. Repeated games capture the idea that a player will have to take into account the impact of his or her current action on the future actions of other players; this impact is sometimes called his or her reputation. Single stage game or single shot game are names for non-repeated games.

In game theory, a Manipulated Nash equilibrium or MAPNASH is a refinement of subgame perfect equilibrium used in dynamic games of imperfect information. Informally, a strategy set is a MAPNASH of a game if it would be a subgame perfect equilibrium of the game if the game had perfect information. MAPNASH were first suggested by Amershi, Sadanand, and Sadanand (1988) and has been discussed in several papers since. It is a solution concept based on how players think about other players' thought processes.

In game theory, a subgame perfect equilibrium is a refinement of a Nash equilibrium used in dynamic games. A strategy profile is a subgame perfect equilibrium if it represents a Nash equilibrium of every subgame of the original game. Informally, this means that at any point in the game, the players' behavior from that point onward should represent a Nash equilibrium of the continuation game, no matter what happened before. Every finite extensive game with perfect recall has a subgame perfect equilibrium. Perfect recall is a term introduced by Harold W. Kuhn in 1953 and "equivalent to the assertion that each player is allowed by the rules of the game to remember everything he knew at previous moves and all of his choices at those moves".

<span class="mw-page-title-main">First-player and second-player win</span>

In combinatorial game theory, a two-player deterministic perfect information turn-based game is a first-player-win if with perfect play the first player to move can always force a win. Similarly, a game is second-player-win if with perfect play the second player to move can always force a win. With perfect play, if neither side can force a win, the game is a draw.

<span class="mw-page-title-main">Simultaneous game</span>

In game theory, a simultaneous game or static game is a game where each player chooses their action without knowledge of the actions chosen by other players. Simultaneous games contrast with sequential games, which are played by the players taking turns. In other words, both players normally act at the same time in a simultaneous game. Even if the players do not act at the same time, both players are uninformed of each other's move while making their decisions. Normal form representations are usually used for simultaneous games. Given a continuous game, players will have different information sets if the game is simultaneous than if it is sequential because they have less information to act on at each step in the game. For example, in a two player continuous game that is sequential, the second player can act in response to the action taken by the first player. However, this is not possible in a simultaneous game where both players act at the same time.

In game theory, Mertens stability is a solution concept used to predict the outcome of a non-cooperative game. A tentative definition of stability was proposed by Elon Kohlberg and Jean-François Mertens for games with finite numbers of players and strategies. Later, Mertens proposed a stronger definition that was elaborated further by Srihari Govindan and Mertens. This solution concept is now called Mertens stability, or just stability.

References

  1. Brocas; Carrillo; Sachdeva (2018). "The Path to Equilibrium in Sequential and Simultaneous Games". Journal of Economic Theory . 178: 246–274. doi: 10.1016/j.jet.2018.09.011 . S2CID   12989080.
  2. 1 2 Aumann, R. J. Game Theory.[ full citation needed ]
  3. Claude Shannon (1950). "Programming a Computer for Playing Chess" (PDF). Philosophical Magazine. 41 (314).
  4. Aumann, R.J. (2008), Palgrave Macmillan (ed.), "Game Theory", The New Palgrave Dictionary of Economics, London: Palgrave Macmillan UK, pp. 1–40, doi:10.1057/978-1-349-95121-5_942-2, ISBN   978-1-349-95121-5 , retrieved 2021-12-08
  5. Aliprantis, Charalambos D. (August 1999). "On the backward induction method". Economics Letters. 64 (2): 125–131. doi:10.1016/s0165-1765(99)00068-3.