N-player game

Last updated

In game theory, an n-player game is a game which is well defined for any number of players. This is usually used in contrast to standard 2-player games that are only specified for two players. In defining n-player games, game theorists usually provide a definition that allow for any (finite) number of players. [1] The limiting case of is the subject of mean field game theory. [2]

Changing games from 2-player games to n-player games entails some concerns.

Related Research Articles

An evolutionarily stable strategy (ESS) is a strategy which, if adopted by a population in a given environment, is impenetrable, meaning that it cannot be invaded by any alternative strategy that are initially rare. It is relevant in game theory, behavioural ecology, and evolutionary psychology. An ESS is an equilibrium refinement of the Nash equilibrium. It is a Nash equilibrium that is "evolutionarily" stable: once it is fixed in a population, natural selection alone is sufficient to prevent alternative (mutant) strategies from invading successfully. The theory is not intended to deal with the possibility of gross external changes to the environment that bring new selective forces to bear.

Game theory The study of mathematical models of strategic interaction between rational decision-makers

Game theory is the study of mathematical models of strategic interaction among rational decision-makers. It has applications in all fields of social science, as well as in logic, systems science and computer science. Originally, it addressed zero-sum games, in which each participant's gains or losses are exactly balanced by those of the other participants. Today, game theory applies to a wide range of behavioral relations, and is now an umbrella term for the science of logical decision making in humans, animals, and computers.

In game theory and economic theory, a zero-sum game is a mathematical representation of a situation in which each participant's gain or loss of utility is exactly balanced by the losses or gains of the utility of the other participants. If the total gains of the participants are added up and the total losses are subtracted, they will sum to zero. Thus, cutting a cake, where taking a larger piece reduces the amount of cake available for others as much as it increases the amount available for that taker, is a zero-sum game if all participants value each unit of cake equally.

In game theory, the Nash equilibrium, named after the mathematician John Forbes Nash Jr., is a proposed solution of a non-cooperative game involving two or more players in which each player is assumed to know the equilibrium strategies of the other players, and no player has anything to gain by changing only their own strategy.

Surreal number a totally ordered proper class containing the real numbers as well as hyperreal numbers such as infinity and infinitesimals.

In mathematics, the surreal number system is a totally ordered proper class containing the real numbers as well as infinite and infinitesimal numbers, respectively larger or smaller in absolute value than any positive real number. The surreals share many properties with the reals, including the usual arithmetic operations ; as such, they form an ordered field. If formulated in von Neumann–Bernays–Gödel set theory, the surreal numbers are a universal ordered field in the sense that all other ordered fields, such as the rationals, the reals, the rational functions, the Levi-Civita field, the superreal numbers, and the hyperreal numbers, can be realized as subfields of the surreals. The surreals also contain all transfinite ordinal numbers; the arithmetic on them is given by the natural operations. It has also been shown that the maximal class hyperreal field is isomorphic to the maximal class surreal field; in theories without the axiom of global choice, this need not be the case, and in such theories it is not necessarily true that the surreals are a universal ordered field.

In mathematics, the nimbers, also called Grundy numbers, are introduced in combinatorial game theory, where they are defined as the values of heaps in the game Nim. The nimbers are the ordinal numbers endowed with nimber addition and nimber multiplication, which are distinct from ordinal addition and ordinal multiplication.

Combinatorial game theory branch of game theory about two-player sequential games with perfect information

Combinatorial game theory (CGT) is a branch of mathematics and theoretical computer science that typically studies sequential games with perfect information. Study has been largely confined to two-player games that have a position in which the players take turns changing in defined ways or moves to achieve a defined winning condition. CGT has not traditionally studied games of chance or those that use imperfect or incomplete information, favoring games that offer perfect information in which the state of the game and the set of available moves is always known by both players. However, as mathematical techniques advance, the types of game that can be mathematically analyzed expands, thus the boundaries of the field are ever changing. Scholars will generally define what they mean by a "game" at the beginning of a paper, and these definitions often vary as they are specific to the game being analyzed and are not meant to represent the entire scope of the field.

In physics and probability theory, mean-field theory studies the behavior of high-dimensional random (stochastic) models by studying a simpler model that approximates the original by averaging over degrees of freedom. Such models consider many individual components that interact with each other. In MFT, the effect of all the other individuals on any given individual is approximated by a single averaged effect, thus reducing a many-body problem to a one-body problem.

Abstract strategy game strategy game that minimizes luck and does not rely on a theme

An abstract strategy game is a strategy game in which the theme is not important to the experience of playing. Many of the world's classic board games, including chess, Go, checkers and draughts, xiangqi, shogi, Reversi, nine men's morris, and most mancala variants, fit into this category. As J. Mark Thompson wrote in his article "Defining the Abstract", play is sometimes said to resemble a series of puzzles the players pose to each other:

There is an intimate relationship between such games and puzzles: every board position presents the player with the puzzle, What is the best move?, which in theory could be solved by logic alone. A good abstract game can therefore be thought of as a "family" of potentially interesting logic puzzles, and the play consists of each player posing such a puzzle to the other. Good players are the ones who find the most difficult puzzles to present to their opponents.

In game theory, a cooperative game is a game with competition between groups of players ("coalitions") due to the possibility of external enforcement of cooperative behavior. Those are opposed to non-cooperative games in which there is either no possibility to forge alliances or all agreements need to be self-enforcing.

In the mathematical discipline of model theory, the Ehrenfeucht–Fraïssé game is a technique for determining whether two structures are elementarily equivalent. The main application of Ehrenfeucht–Fraïssé games is in proving the inexpressibility of certain properties in first-order logic. Indeed, Ehrenfeucht–Fraïssé games provide a complete methodology for proving inexpressibility results for first-order logic. In this role, these games are of particular importance in finite model theory and its applications in computer science, since Ehrenfeucht–Fraïssé games are one of the few techniques from model theory that remain valid in the context of finite models. Other widely used techniques for proving inexpressibility results, such as the compactness theorem, do not work in finite models.

Determinacy is a subfield of set theory, a branch of mathematics, that examines the conditions under which one or the other player of a game has a winning strategy, and the consequences of the existence of such strategies. Alternatively and similarly, "determinacy" is the property of a game whereby such a strategy exists.

In game theory, folk theorems are a class of theorems describing an abundance of Nash equilibrium payoff profiles in repeated games. The original Folk Theorem concerned the payoffs of all the Nash equilibria of an infinitely repeated game. This result was called the Folk Theorem because it was widely known among game theorists in the 1950s, even though no one had published it. Friedman's (1971) Theorem concerns the payoffs of certain subgame-perfect Nash equilibria (SPE) of an infinitely repeated game, and so strengthens the original Folk Theorem by using a stronger equilibrium concept: subgame-perfect Nash equilibria rather than Nash equilibria.

The mathematics of gambling are a collection of probability applications encountered in games of chance and can be included in game theory. From a mathematical point of view, the games of chance are experiments generating various types of aleatory events, the probability of which can be calculated by using the properties of probability on a finite space of events.

In game theory, a stochastic game, introduced by Lloyd Shapley in the early 1950s, is a dynamic game with probabilistic transitions played by one or more players. The game is played in a sequence of stages. At the beginning of each stage the game is in some state. The players select actions and each player receives a payoff that depends on the current state and the chosen actions. The game then moves to a new random state whose distribution depends on the previous state and the actions chosen by the players. The procedure is repeated at the new state and play continues for a finite or infinite number of stages. The total payoff to a player is often taken to be the discounted sum of the stage payoffs or the limit inferior of the averages of the stage payoffs.

A topological game is an infinite game of perfect information played between two players on a topological space. Players choose objects with topological properties such as points, open sets, closed sets and open coverings. Time is generally discrete, but the plays may have transfinite lengths, and extensions to continuum time have been put forth. The conditions for a player to win can involve notions like topological closure and convergence.

Game Structured form of play, for entertainment

A game is a structured form of play, usually undertaken for entertainment or fun, and sometimes used as an educational tool. Games are distinct from work, which is usually carried out for remuneration, and from art, which is more often an expression of aesthetic or ideological elements. However, the distinction is not clear-cut, and many games are also considered to be work or art.

In game theory a Poisson game is a game with a random number of players, where the distribution of the number of players follows a Poisson random process. An extension of games of imperfect information, Poisson games have mostly seen application to models of voting.

Mean-field game theory is the study of strategic decision making in very large populations of small interacting agents. This class of problems was considered in the economics literature by Boyan Jovanovic and Robert W. Rosenthal, in the engineering literature by Peter E. Caines and his co-workers and independently and around the same time by mathematicians Jean-Michel Lasry and Pierre-Louis Lions.

Game design Game development process of designing the content and rules of a game

Game design is the art of applying design and aesthetics to create a game for entertainment or for educational, exercise, or experimental purposes. Increasingly, elements and principles of game design are also applied to other interactions, in the form of gamification.

References

  1. Binmore, Ken (2007). Playing for Real : A Text on Game Theory:. Oxford University Press. p. 522. ISBN   9780198041146.
  2. Fischer, Markus (2017). "On the connection between symmetric N-player games and mean field games". Annals of Applied Probability. 27 (2): 757–810. arXiv: 1405.1345 . doi:10.1214/16-AAP1215.