WikiMili The Free Encyclopedia

In game theory, a **solution concept** is a formal rule for predicting how a game will be played. These predictions are called "solutions", and describe which strategies will be adopted by players and, therefore, the result of the game. The most commonly used solution concepts are equilibrium concepts, most famously Nash equilibrium.

**Game theory** is the study of mathematical models of strategic interaction between rational decision-makers. It has applications in all fields of social science, as well as in logic and computer science. Originally, it addressed zero-sum games, in which each participant's gains or losses are exactly balanced by those of the other participants. Today, game theory applies to a wide range of behavioral relations, and is now an umbrella term for the science of logical decision making in humans, animals, and computers.

In economics, **economic equilibrium** is a situation in which economic forces such as supply and demand are balanced and in the absence of external influences the (equilibrium) values of economic variables will not change. For example, in the standard textbook model of perfect competition, equilibrium occurs at the point at which quantity demanded and quantity supplied are equal. **Market equilibrium** in this case is a condition where a market price is established through competition such that the amount of goods or services sought by buyers is equal to the amount of goods or services produced by sellers. This price is often called the **competitive price** or market clearing price and will tend not to change unless demand or supply changes, and the quantity is called the "competitive quantity" or market clearing quantity. However, the concept of *equilibrium* in economics also applies to imperfectly competitive markets, where it takes the form of a Nash equilibrium.

In game theory, the **Nash equilibrium**, named after the mathematician John Forbes Nash Jr., is a proposed solution of a non-cooperative game involving two or more players in which each player is assumed to know the equilibrium strategies of the other players, and no player has anything to gain by changing only their own strategy.

- Formal definition
- Rationalizability and iterated dominance
- Nash equilibrium
- Backward induction
- Subgame perfect Nash equilibrium
- Perfect Bayesian equilibrium
- Forward induction
- See also
- References

Many solution concepts, for many games, will result in more than one solution. This puts any one of the solutions in doubt, so a game theorist may apply a **refinement** to narrow down the solutions. Each successive solution concept presented in the following improves on its predecessor by eliminating implausible equilibria in richer games.

Let be the class of all games and, for each game , let be the set of strategy profiles of . A *solution concept* is an element of the direct product *i.e*., a function such that for all

In this solution concept, players are assumed to be rational and so ** strictly dominated strategies ** are eliminated from the set of strategies that might feasibly be played. A strategy is strictly dominated when there is some other strategy available to the player that always has a higher payoff, regardless of the strategies that the other players choose. (Strictly dominated strategies are also important in minimax game-tree search.) For example, in the (single period) prisoners' dilemma (shown below), *cooperate* is strictly dominated by *defect* for both players because either player is always better off playing *defect*, regardless of what his opponent does.

**Minimax** is a decision rule used in artificial intelligence, decision theory, game theory, statistics and philosophy for *mini*mizing the possible loss for a worst case scenario. When dealing with gains, it is referred to as "maximin"—to maximize the minimum gain. Originally formulated for two-player zero-sum game theory, covering both the cases where players take alternate moves and those where they make simultaneous moves, it has also been extended to more complex games and to general decision-making in the presence of uncertainty.

The **prisoner's dilemma** is a standard example of a game analyzed in game theory that shows why two completely rational individuals might not cooperate, even if it appears that it is in their best interests to do so. It was originally framed by Merrill Flood and Melvin Dresher while working at RAND in 1950. Albert W. Tucker formalized the game with prison sentence rewards and named it "prisoner's dilemma", presenting it as follows:

Two members of a criminal gang are arrested and imprisoned. Each prisoner is in solitary confinement with no means of communicating with the other. The prosecutors lack sufficient evidence to convict the pair on the principal charge, but they have enough to convict both on a lesser charge. Simultaneously, the prosecutors offer each prisoner a bargain. Each prisoner is given the opportunity either to betray the other by testifying that the other committed the crime, or to cooperate with the other by remaining silent. The offer is:

Prisoner 2 Cooperate | Prisoner 2 Defect | |
---|---|---|

Prisoner 1 Cooperate | −0.5, −0.5 | −10, 0 |

Prisoner 1 Defect | 0, −10 | −2, −2 |

A Nash equilibrium is a strategy profile (a strategy profile specifies a strategy for every player, e.g. in the above prisoners' dilemma game (*cooperate*, *defect*) specifies that prisoner 1 plays *cooperate* and player 2 plays *defect*) in which every strategy is a best response to every other strategy played. A strategy by a player is a best response to another player's strategy if there is no other strategy that could be played that would yield a higher pay-off in any situation in which the other player's strategy is played.

In game theory, the **best response** is the strategy which produces the most favorable outcome for a player, taking other players' strategies as given. The concept of a best response is central to John Nash's best-known contribution, the Nash equilibrium, the point at which each player in a game has selected the best response to the other players' strategies.

There are games that have multiple Nash equilibria, some of which are unrealistic. In the case of dynamic games, unrealistic Nash equilibria might be eliminated by applying backward induction, which assumes that future play will be rational. It therefore eliminates noncredible threats because such threats would be irrational to carry out if a player was ever called upon to do so.

For example, consider a dynamic game in which the players are an incumbent firm in an industry and a potential entrant to that industry. As it stands, the incumbent has a monopoly over the industry and does not want to lose some of its market share to the entrant. If the entrant chooses not to enter, the payoff to the incumbent is high (it maintains its monopoly) and the entrant neither loses nor gains (its payoff is zero). If the entrant enters, the incumbent can fight or accommodate the entrant. It will fight by lowering its price, running the entrant out of business (and incurring exit costs – a negative payoff) and damaging its own profits. If it accommodates the entrant it will lose some of its sales, but a high price will be maintained and it will receive greater profits than by lowering its price (but lower than monopoly profits).

If the entrant enters, the best response of the incumbent is to accommodate. If the incumbent accommodates, the best response of the entrant is to enter (and gain profit). Hence the strategy profile in which the incumbent accommodates if the entrant enters and the entrant enters if the incumbent accommodates is a Nash equilibrium. However, if the incumbent is going to play fight, the best response of the entrant is to not enter. If the entrant does not enter, it does not matter what the incumbent chooses to do (since there is no other firm to do it to - note that if the entrant does not enter, fight and accommodate yield the same payoffs to both players; the incumbent will not lower its prices if the entrant does not enter). Hence fight can be considered as a best response of the incumbent if the entrant does not enter. Hence the strategy profile in which the incumbent fights if the entrant does not enter and the entrant does not enter if the incumbent fights is a Nash equilibrium. Since the game is dynamic, any claim by the incumbent that it will fight is an incredible threat because by the time the decision node is reached where it can decide to fight (i.e. the entrant has entered), it would be irrational to do so. Therefore this Nash equilibrium can be eliminated by backward induction.

See also:

A generalization of backward induction is subgame perfection. Backward induction assumes that all future play will be rational. In subgame perfect equilibria, play in every subgame is rational (specifically a Nash equilibrium). Backward induction can only be used in terminating (finite) games of definite length and cannot be applied to games with imperfect information. In these cases, subgame perfection can be used. The eliminated Nash equilibrium described above is subgame imperfect because it is not a Nash equilibrium of the subgame that starts at the node reached once the entrant has entered.

In game theory, a **subgame** is any part of a game that meets the following criteria :

- It has a single initial node that is the only member of that node's information set.
- If a node is contained in the subgame then so are all of its successors.
- If a node in a particular information set is in the subgame then all members of that information set belong to the subgame.

Sometimes subgame perfection does not impose a large enough restriction on unreasonable outcomes. For example, since subgames cannot cut through information sets, a game of imperfect information may have only one subgame – itself – and hence subgame perfection cannot be used to eliminate any Nash equilibria. A perfect Bayesian equilibrium (PBE) is a specification of players’ strategies *and beliefs* about which node in the information set has been reached by the play of the game. A belief about a decision node is the probability that a particular player thinks that node is or will be in play (on the *equilibrium path*). In particular, the intuition of PBE is that it specifies player strategies that are rational given the player beliefs it specifies and the beliefs it specifies are consistent with the strategies it specifies.

In game theory, an **information set** is a set that, for a particular player, establishes all the possible moves that could have taken place in the game so far, given what that player has observed. If the game has perfect information, every information set contains only one member, namely the point actually reached at that stage of the game. Otherwise, it is the case that some players cannot be sure exactly what has taken place so far in the game and what their position is.

In a Bayesian game a strategy determines what a player plays at every information set controlled by that player. The requirement that beliefs are consistent with strategies is something not specified by subgame perfection. Hence, PBE is a consistency condition on players’ beliefs. Just as in a Nash equilibrium no player’s strategy is strictly dominated, in a PBE, for any information set no player’s strategy is strictly dominated beginning at that information set. That is, for every belief that the player could hold at that information set there is no strategy that yields a greater expected payoff for that player. Unlike the above solution concepts, no player’s strategy is strictly dominated beginning at any information set even if it is off the equilibrium path. Thus in PBE, players cannot threaten to play strategies that are strictly dominated beginning at any information set off the equilibrium path.

The *Bayesian* in the name of this solution concept alludes to the fact that players update their beliefs according to Bayes' theorem. They calculate probabilities given what has already taken place in the game.

**Forward induction** is so called because just as backward induction assumes future play will be rational, forward induction assumes past play was rational. Where a player does not know what *type* another player is (i.e. there is imperfect and asymmetric information), that player may form a belief of what type that player is by observing that player's past actions. Hence the belief formed by that player of what the probability of the opponent being a certain type is based on the past play of that opponent being rational. A player may elect to signal his type through his actions.

Kohlberg and Mertens (1986) introduced the solution concept of Stable equilibrium, a refinement that satisfies forward induction. A counter-example was found where such a stable equilibrium did not satisfy backward induction. To resolve the problem Jean-François Mertens introduced what game theorists now call Mertens-stable equilibrium concept, probably the first solution concept satisfying both forward and backward induction.

In game theory, the **centipede game**, first introduced by Robert Rosenthal in 1981, is an extensive form game in which two players take turns choosing either to take a slightly larger share of an increasing pot, or to pass the pot to the other player. The payoffs are arranged so that if one passes the pot to one's opponent and the opponent takes the pot on the next round, one receives slightly less than if one had taken the pot on this round. Although the traditional centipede game had a limit of 100 rounds, any game with this structure but a different number of rounds is called a centipede game.

In game theory, a **signaling game** is a simple type of a dynamic Bayesian game.

In game theory, a player's **strategy** is any of the options which he or she chooses in a setting where the outcome depends *not only* on their own actions *but* on the actions of others. A player's strategy will determine the action which the player will take at any stage of the game.

In game theory, a **Perfect Bayesian Equilibrium** (PBE) is an equilibrium concept relevant for dynamic games with incomplete information. A PBE is a refinement of both Bayesian Nash equilibrium (BNE) and subgame perfect equilibrium (SPE). A PBE has two components - *strategies* and *beliefs*:

In game theory, a **Bayesian game** is a game in which players have incomplete information about the other players. For example, a player may not know the exact payoff functions of the other players, but instead have beliefs about these payoff functions. These beliefs are represented by a probability distribution over the possible payoff functions.

**Backward induction** is the process of reasoning backwards in time, from the end of a problem or situation, to determine a sequence of optimal actions. It proceeds by first considering the last time a decision might be made and choosing what to do in any situation at that time. Using this information, one can then determine what to do at the second-to-last time of decision. This process continues backwards until one has determined the best action for every possible situation at every point in time. It was first used by Zermelo in 1913, to prove that chess has pure optimal strategies.

In game theory, **folk theorems** are a class of theorems about possible Nash equilibrium payoff profiles in repeated games. The original Folk Theorem concerned the payoffs of all the Nash equilibria of an infinitely repeated game. This result was called the Folk Theorem because it was widely known among game theorists in the 1950s, even though no one had published it. Friedman's (1971) Theorem concerns the payoffs of certain subgame-perfect Nash equilibria (SPE) of an infinitely repeated game, and so strengthens the original Folk Theorem by using a stronger equilibrium concept subgame-perfect Nash equilibria rather than Nash equilibrium.

In game theory, a **repeated game** is an extensive form game that consists of a number of repetitions of some base game. The stage game is usually one of the well-studied 2-person games. Repeated games capture the idea that a player will have to take into account the impact of his or her current action on the future actions of other players; this impact is sometimes called his or her reputation. *Single stage game* or *single shot game* are names for non-repeated games.

In game theory, a **subgame perfect equilibrium** is a refinement of a Nash equilibrium used in dynamic games. A strategy profile is a subgame perfect equilibrium if it represents a Nash equilibrium of every subgame of the original game. Informally, this means that if the players played any smaller game that consisted of only one part of the larger game, their behavior would represent a Nash equilibrium of that smaller game. Every finite extensive game has a subgame perfect equilibrium.

**Quantal response equilibrium** (**QRE**) is a solution concept in game theory. First introduced by Richard McKelvey and Thomas Palfrey, it provides an equilibrium notion with bounded rationality. QRE is not an equilibrium refinement, and it can give significantly different results from Nash equilibrium. QRE is only defined for games with discrete strategies, although there are continuous-strategy analogues.

**Risk dominance** and **payoff dominance** are two related refinements of the Nash equilibrium (NE) solution concept in game theory, defined by John Harsanyi and Reinhard Selten. A Nash equilibrium is considered **payoff dominant** if it is Pareto superior to all other Nash equilibria in the game. When faced with a choice among equilibria, all players would agree on the payoff dominant equilibrium since it offers to each player at least as much payoff as the other Nash equilibria. Conversely, a Nash equilibrium is considered **risk dominant** if it has the largest basin of attraction. This implies that the more uncertainty players have about the actions of the other player(s), the more likely they will choose the strategy corresponding to it.

In game theory, an **epsilon-equilibrium**, or near-Nash equilibrium, is a strategy profile that approximately satisfies the condition of Nash equilibrium. In a Nash equilibrium, no player has an incentive to change his behavior. In an approximate Nash equilibrium, this requirement is weakened to allow the possibility that a player may have a small incentive to do something different. This may still be considered an adequate solution concept, assuming for example status quo bias. This solution concept may be preferred to Nash equilibrium due to being easier to compute, or alternatively due to the possibility that in games of more than 2 players, the probabilities involved in an exact Nash equilibrium need not be rational numbers.

**The intuitive criterion** is a technique for equilibrium refinement in signaling games. It aims to reduce possible outcome scenarios by first restricting the type group to types of agents who could obtain higher utility levels by deviating to off-the-equilibrium messages and second by considering in this sub-set of types the types for which the off-the-equilibrium message is not equilibrium dominated.

The concept of **coalition-proof Nash equilibrium** applies to certain "noncooperative" environments in which players can freely discuss their strategies but cannot make binding commitments. It emphasizes the immunization to deviations that are self-enforcing. While the best-response property in Nash equilibrium is necessary for self-enforceability, it is not generally sufficient when players can jointly deviate in a way that is mutually beneficial.

A **Markov perfect equilibrium** is an equilibrium concept in game theory. It is the refinement of the concept of subgame perfect equilibrium to extensive form games for which a pay-off relevant state space can be readily identified. The term appeared in publications starting about 1988 in the work of economists Jean Tirole and Eric Maskin. It has since been used, among else, in the analysis of industrial organization, macroeconomics and political economy.

**Jean-François Mertens** was a Belgian game theorist and mathematical economist.

**Mertens stability** is a solution concept used to predict the outcome of a non-cooperative game. A tentative definition of stability was proposed by Elon Kohlberg and Jean-François Mertens for games with finite numbers of players and strategies. Later, Mertens proposed a stronger definition that was elaborated further by Srihari Govindan and Mertens. This solution concept is now called Mertens stability, or just stability.

**M equilibrium** is a set valued solution concept in game theory that relaxes the rational choice assumptions of perfect maximization and perfect beliefs. The concept can be applied to any normal-form game with finite and discrete strategies. M equilibrium was first introduced by Jacob K. Goeree and Philippos Louis.

- Cho, I-K.; Kreps, D. M. (1987). "Signaling Games and Stable Equilibria".
*Quarterly Journal of Economics*.**102**(2): 179–221. CiteSeerX 10.1.1.407.5013 . doi:10.2307/1885060. JSTOR 1885060. - Fudenberg, Drew; Tirole, Jean (1991).
*Game theory*. Cambridge, Massachusetts: MIT Press. ISBN 9780262061414. Book preview. - Harsanyi, J. (1973) Oddness of the number of equilibrium points: a new proof.
*International Journal of Game Theory*2:235–250. - Govindan, Srihari & Robert Wilson, 2008. "Refinements of Nash Equilibrium," The New Palgrave Dictionary of Economics, 2nd Edition.
- Hines, W. G. S. (1987) Evolutionary stable strategies: a review of basic theory.
*Theoretical Population Biology*31:195–272. - Kohlberg, Elon & Jean-François Mertens, 1986. "On the Strategic Stability of Equilibria," Econometrica, Econometric Society, vol. 54(5), pages 1003-37, September.
- Leyton-Brown, Kevin; Shoham, Yoav (2008).
*Essentials of Game Theory: A Concise, Multidisciplinary Introduction*. San Rafael, CA: Morgan & Claypool Publishers. ISBN 978-1-59829-593-1. - Mertens, Jean-François, 1989. "Stable Equilibria - A reformulation. Part 1 Basic Definitions and Properties," Mathematics of Operations Research, Vol. 14, No. 4, Nov.
- Noldeke, G. & Samuelson, L. (1993) An evolutionary analysis of backward and forward induction.
*Games & Economic Behaviour*5:425–454. - Maynard Smith, J. (1982)
*Evolution and the Theory of Games*. ISBN 0-521-28884-3 - Osborne, Martin J.; Rubinstein, Ariel (1994).
*A course in game theory*. MIT Press. ISBN 978-0-262-65040-3.. - Selten, R. (1983) Evolutionary stability in extensive two-person games.
*Math. Soc. Sci.*5:269–363. - Selten, R. (1988) Evolutionary stability in extensive two-person games – correction and further development.
*Math. Soc. Sci.*16:223–266 - Shoham, Yoav; Leyton-Brown, Kevin (2009).
*Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations*. New York: Cambridge University Press. ISBN 978-0-521-89943-7. - Thomas, B. (1985a) On evolutionary stable sets.
*J. Math. Biol.*22:105–115. - Thomas, B. (1985b) Evolutionary stable sets in mixed-strategist models.
*Theor. Pop. Biol.*28:332–341

This page is based on this Wikipedia article

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.