Best response

Last updated

In game theory, the best response is the strategy (or strategies) which produces the most favorable outcome for a player, taking other players' strategies as given. [1] The concept of a best response is central to John Nash's best-known contribution, the Nash equilibrium, the point at which each player in a game has selected the best response (or one of the best responses) to the other players' strategies. [2]

Contents

Correspondence

Figure 1. Reaction correspondence for player Y in the Stag Hunt game. Reaction correspondence player y.jpg
Figure 1. Reaction correspondence for player Y in the Stag Hunt game.

Reaction correspondences , also known as best response correspondences, are used in the proof of the existence of mixed strategy Nash equilibria. [3] [4] Reaction correspondences are not "reaction functions" since functions must only have one value per argument, and many reaction correspondences will be undefined, i.e., a vertical line, for some opponent strategy choice. One constructs a correspondence b(·), for each player from the set of opponent strategy profiles into the set of the player's strategies. So, for any given set of opponent's strategies σ−i, bi(σ−i) represents player i's best responses to σ−i.

Figure 2. Reaction correspondence for player X in the Stag Hunt game. Reaction-correspondence-playerx.jpg
Figure 2. Reaction correspondence for player X in the Stag Hunt game.

Response correspondences for all 2 × 2 normal form games can be drawn with a line for each player in a unit square strategy space. Figures 1 to 3 graphs the best response correspondences for the stag hunt game. The dotted line in Figure 1 shows the optimal probability that player Y plays 'Stag' (in the y-axis), as a function of the probability that player X plays Stag (shown in the x-axis). In Figure 2 the dotted line shows the optimal probability that player X plays 'Stag' (shown in the x-axis), as a function of the probability that player Y plays Stag (shown in the y-axis). Note that Figure 2 plots the independent and response variables in the opposite axes to those normally used, so that it may be superimposed onto the previous graph, to show the Nash equilibria at the points where the two player's best responses agree in Figure 3.

There are three distinctive reaction correspondence shapes, one for each of the three types of symmetric 2 × 2 games: coordination games, discoordination games, and games with dominated strategies (the trivial fourth case in which payoffs are always equal for both moves is not really a game theoretical problem). Any payoff symmetric 2 × 2 game will take one of these three forms.

Coordination games

Games in which players score highest when both players choose the same strategy, such as the stag hunt and battle of the sexes, are called coordination games. These games have reaction correspondences of the same shape as Figure 3, where there is one Nash equilibrium in the bottom left corner, another in the top right, and a mixing Nash somewhere along the diagonal between the other two.

Anti-coordination games

Figure 3. Reaction correspondence for both players in the Stag Hunt game. Nash equilibria shown with points, where the two player's correspondences agree, i.e. cross Reaction-correspondence-stag-hunt.jpg
Figure 3. Reaction correspondence for both players in the Stag Hunt game. Nash equilibria shown with points, where the two player's correspondences agree, i.e. cross

Games such as the game of chicken and hawk-dove game in which players score highest when they choose opposite strategies, i.e., discoordinate, are called anti-coordination games. They have reaction correspondences (Figure 4) that cross in the opposite direction to coordination games, with three Nash equilibria, one in each of the top left and bottom right corners, where one player chooses one strategy, the other player chooses the opposite strategy. The third Nash equilibrium is a mixed strategy which lies along the diagonal from the bottom left to top right corners. If the players do not know which one of them is which, then the mixed Nash is an evolutionarily stable strategy (ESS), as play is confined to the bottom left to top right diagonal line. Otherwise an uncorrelated asymmetry is said to exist, and the corner Nash equilibria are ESSes.

Figure 4. Reaction correspondence for both players in the hawk-dove game. Nash equilibria shown with points, where the two player's correspondences agree, i.e. cross Reaction-correspondence-hawk-dove.jpg
Figure 4. Reaction correspondence for both players in the hawk-dove game. Nash equilibria shown with points, where the two player's correspondences agree, i.e. cross

Games with dominated strategies

Figure 5. Reaction correspondence for a game with a dominated strategy. Reaction-correspondence-dominated.jpg
Figure 5. Reaction correspondence for a game with a dominated strategy.

Games with dominated strategies have reaction correspondences which only cross at one point, which will be in either the bottom left, or top right corner in payoff symmetric 2 × 2 games. For instance, in the single-play prisoner's dilemma, the "Cooperate" move is not optimal for any probability of opponent Cooperation. Figure 5 shows the reaction correspondence for such a game, where the dimensions are "Probability play Cooperate", the Nash equilibrium is in the lower left corner where neither player plays Cooperate. If the dimensions were defined as "Probability play Defect", then both players best response curves would be 1 for all opponent strategy probabilities and the reaction correspondences would cross (and form a Nash equilibrium) at the top right corner.

Other (payoff asymmetric) games

A wider range of reaction correspondences shapes is possible in 2 × 2 games with payoff asymmetries. For each player there are five possible best response shapes, shown in Figure 6. From left to right these are: dominated strategy (always play 2), dominated strategy (always play 1), rising (play strategy 2 if probability that the other player plays 2 is above threshold), falling (play strategy 1 if probability that the other player plays 2 is above threshold), and indifferent (both strategies play equally well under all conditions).

Figure 6 - The five possible reaction correspondences for a player in a 2 x 2 game. The axes are assumed to show the probability that the player plays their strategy 1. From left to right: A) Always play 2, strategy 1 is dominated, B) Always play 1, strategy 2 is dominated, C) Strategy 1 best when opponent plays his strategy 1 and 2 best when opponent plays his 2, D) Strategy 1 best when opponent plays his strategy 2 and 2 best when opponent plays his 1, E) Both strategies play equally well no matter what the opponent plays. Five-Reaction-Correspondences.jpg
Figure 6 - The five possible reaction correspondences for a player in a 2 × 2 game. The axes are assumed to show the probability that the player plays their strategy 1. From left to right: A) Always play 2, strategy 1 is dominated, B) Always play 1, strategy 2 is dominated, C) Strategy 1 best when opponent plays his strategy 1 and 2 best when opponent plays his 2, D) Strategy 1 best when opponent plays his strategy 2 and 2 best when opponent plays his 1, E) Both strategies play equally well no matter what the opponent plays.

While there are only four possible types of payoff symmetric 2 × 2 games (of which one is trivial), the five different best response curves per player allow for a larger number of payoff asymmetric game types. Many of these are not truly different from each other. The dimensions may be redefined (exchange names of strategies 1 and 2) to produce symmetrical games which are logically identical.

Matching pennies

One well-known game with payoff asymmetries is the matching pennies game. In this game one player, the row player (graphed on the y dimension) wins if the players coordinate (both choose heads or both choose tails) while the other player, the column player (shown in the x-axis) wins if the players discoordinate. Player Y's reaction correspondence is that of a coordination game, while that of player X is a discoordination game. The only Nash equilibrium is the combination of mixed strategies where both players independently choose heads and tails with probability 0.5 each.

Figure 7. Reaction correspondences for players in the matching pennies game. The leftmost mapping is for the coordinating player, the middle shows the mapping for the discoordinating player. The sole Nash equilibrium is shown in the right hand graph. Reaction-correspondence-matching-pennies.jpg
Figure 7. Reaction correspondences for players in the matching pennies game. The leftmost mapping is for the coordinating player, the middle shows the mapping for the discoordinating player. The sole Nash equilibrium is shown in the right hand graph.

Dynamics

In evolutionary game theory, best response dynamics represents a class of strategy updating rules, where players strategies in the next round are determined by their best responses to some subset of the population. Some examples include:

Importantly, in these models players only choose the best response on the next round that would give them the highest payoff on the next round. Players do not consider the effect that choosing a strategy on the next round would have on future play in the game. This constraint results in the dynamical rule often being called myopic best response.

In the theory of potential games, best response dynamics refers to a way of finding a Nash equilibrium by computing the best response for every player:

Theorem  In any finite potential game, best response dynamics always converge to a Nash equilibrium. [6]

Smoothed

Figure 8. A BR correspondence (black) and smoothed BR functions (colors) SmoothBRColor.png
Figure 8. A BR correspondence (black) and smoothed BR functions (colors)

Instead of best response correspondences, some models use smoothed best response functions. These functions are similar to the best response correspondence, except that the function does not "jump" from one pure strategy to another. The difference is illustrated in Figure 8, where black represents the best response correspondence and the other colors each represent different smoothed best response functions. In standard best response correspondences, even the slightest benefit to one action will result in the individual playing that action with probability 1. In smoothed best response as the difference between two actions decreases the individual's play approaches 50:50.

There are many functions that represent smoothed best response functions. The functions illustrated here are several variations on the following function:

where E(x) represents the expected payoff of action x, and γ is a parameter that determines the degree to which the function deviates from the true best response (a larger γ implies that the player is more likely to make 'mistakes').

There are several advantages to using smoothed best response, both theoretical and empirical. First, it is consistent with psychological experiments; when individuals are roughly indifferent between two actions they appear to choose more or less at random. Second, the play of individuals is uniquely determined in all cases, since it is a correspondence that is also a function. Finally, using smoothed best response with some learning rules (as in Fictitious play) can result in players learning to play mixed strategy Nash equilibria. [7]

See also

Related Research Articles

In game theory, the Nash equilibrium is the most commonly-used solution concept for non-cooperative games. A Nash equilibrium is a situation where no player could gain by changing their own strategy. The idea of Nash equilibrium dates back to the time of Cournot, who in 1838 applied it to his model of competition in an oligopoly.

The game of chicken, also known as the hawk-dove game or snowdrift game, is a model of conflict for two players in game theory. The principle of the game is that while the ideal outcome is for one player to yield, individuals try to avoid it out of pride, not wanting to look like "chickens." Each player taunts the other to increase the risk of shame in yielding. However, when one player yields, the conflict is avoided, and the game essentially ends.

A coordination game is a type of simultaneous game found in game theory. It describes the situation where a player will earn a higher payoff when they select the same course of action as another player. The game is not one of pure conflict, which results in multiple pure strategy Nash equilibria in which players choose matching strategies. Figure 1 shows a 2-player example.

Matching pennies is a non-cooperative game studied in game theory. It is played between two players, Even and Odd. Each player has a penny and must secretly turn the penny to heads or tails. The players then reveal their choices simultaneously. If the pennies match, then Even wins and keeps both pennies. If the pennies do not match, then Odd wins and keeps both pennies.

In game theory, a move, action, or play is any one of the options which a player can choose in a setting where the optimal outcome depends not only on their own actions but on the actions of others. The discipline mainly concerns the action of a player in a game affecting the behavior or actions of other players. Some examples of "games" include chess, bridge, poker, monopoly, diplomacy or battleship.

In game theory, the stag hunt, sometimes referred to as the assurance game, trust dilemma or common interest game, describes a conflict between safety and social cooperation. The stag hunt problem originated with philosopher Jean-Jacques Rousseau in his Discourse on Inequality. In the most common account of this dilemma, which is quite different from Rousseau's, two hunters must decide separately, and without the other knowing, whether to hunt a stag or a hare. However, both hunters know the only way to successfully hunt a stag is with the other's help. One hunter can catch a hare alone with less effort and less time, but it is worth far less than a stag and has much less meat. But both hunters would be better off if both choose the more ambitious and more rewarding goal of getting the stag, giving up some autonomy in exchange for the other hunter's cooperation and added might. This situation is often seen as a useful analogy for many kinds of social cooperation, such as international agreements on climate change.

In game theory, the battle of the sexes is a two-player coordination game that also involves elements of conflict. The game was introduced in 1957 by R. Duncan Luce and Howard Raiffa in their classic book, Games and Decisions. Some authors prefer to avoid assigning sexes to the players and instead use Players 1 and 2, and some refer to the game as Bach or Stravinsky, using two concerts as the two events. The game description here follows Luce and Raiffa's original story.

<span class="mw-page-title-main">Solution concept</span> Formal rule for predicting how a game will be played

In game theory, a solution concept is a formal rule for predicting how a game will be played. These predictions are called "solutions", and describe which strategies will be adopted by players and, therefore, the result of the game. The most commonly used solution concepts are equilibrium concepts, most famously Nash equilibrium.

In game theory, a Perfect Bayesian Equilibrium (PBE) is a solution with Bayesian probability to a turn-based game with incomplete information. More specifically, it is an equilibrium concept that uses Bayesian updating to describe player behavior in dynamic games with incomplete information. Perfect Bayesian equilibria are used to solve the outcome of games where players take turns but are unsure of the "type" of their opponent, which occurs when players don't know their opponent's preference between individual moves. A classic example of a dynamic game with types is a war game where the player is unsure whether their opponent is a risk-taking "hawk" type or a pacifistic "dove" type. Perfect Bayesian Equilibria are a refinement of Bayesian Nash equilibrium (BNE), which is a solution concept with Bayesian probability for non-turn-based games.

In game theory, a dominant strategy is a strategy that is better than any other strategy for one player, no matter how that player's opponent will play. Some very simple games can be solved using dominance.

Rationalizability is a solution concept in game theory. It is the most permissive possible solution concept that still requires both players to be at least somewhat rational and know the other players are also somewhat rational, i.e. that they do not play dominated strategies. A strategy is rationalizable if there exists some possible set of beliefs both players could have about each other's actions, that would still result in the strategy being played.

In game theory, the war of attrition is a dynamic timing game in which players choose a time to stop, and fundamentally trade off the strategic gains from outlasting other players and the real costs expended with the passage of time. Its precise opposite is the pre-emption game, in which players elect a time to stop, and fundamentally trade off the strategic costs from outlasting other players and the real gains occasioned by the passage of time. The model was originally formulated by John Maynard Smith; a mixed evolutionarily stable strategy (ESS) was determined by Bishop & Cannings. An example is a second price all-pay auction, in which the prize goes to the player with the highest bid and each player pays the loser's low bid.

In game theory, a correlated equilibrium is a solution concept that is more general than the well known Nash equilibrium. It was first discussed by mathematician Robert Aumann in 1974. The idea is that each player chooses their action according to their private observation of the value of the same public signal. A strategy assigns an action to every possible observation a player can make. If no player would want to deviate from their strategy, the distribution from which the signals are drawn is called a correlated equilibrium.

In game theory, the purification theorem was contributed by Nobel laureate John Harsanyi in 1973. The theorem justifies a puzzling aspect of mixed strategy Nash equilibria: each player is wholly indifferent between each of the actions he puts non-zero weight on, yet he mixes them so as to make every other player also indifferent.

Risk dominance and payoff dominance are two related refinements of the Nash equilibrium (NE) solution concept in game theory, defined by John Harsanyi and Reinhard Selten. A Nash equilibrium is considered payoff dominant if it is Pareto superior to all other Nash equilibria in the game.1 When faced with a choice among equilibria, all players would agree on the payoff dominant equilibrium since it offers to each player at least as much payoff as the other Nash equilibria. Conversely, a Nash equilibrium is considered risk dominant if it has the largest basin of attraction. This implies that the more uncertainty players have about the actions of the other player(s), the more likely they will choose the strategy corresponding to it.

Equilibrium selection is a concept from game theory which seeks to address reasons for players of a game to select a certain equilibrium over another. The concept is especially relevant in evolutionary game theory, where the different methods of equilibrium selection respond to different ideas of what equilibria will be stable and persistent for one player to play even in the face of deviations of the other players. This is important because there are various equilibrium concepts, and for many particular concepts, such as the Nash equilibrium, many games have multiple equilibria.

In game theory, an epsilon-equilibrium, or near-Nash equilibrium, is a strategy profile that approximately satisfies the condition of Nash equilibrium. In a Nash equilibrium, no player has an incentive to change his behavior. In an approximate Nash equilibrium, this requirement is weakened to allow the possibility that a player may have a small incentive to do something different. This may still be considered an adequate solution concept, assuming for example status quo bias. This solution concept may be preferred to Nash equilibrium due to being easier to compute, or alternatively due to the possibility that in games of more than 2 players, the probabilities involved in an exact Nash equilibrium need not be rational numbers.

<span class="mw-page-title-main">Simultaneous game</span>

In game theory, a simultaneous game or static game is a game where each player chooses their action without knowledge of the actions chosen by other players. Simultaneous games contrast with sequential games, which are played by the players taking turns. In other words, both players normally act at the same time in a simultaneous game. Even if the players do not act at the same time, both players are uninformed of each other's move while making their decisions. Normal form representations are usually used for simultaneous games. Given a continuous game, players will have different information sets if the game is simultaneous than if it is sequential because they have less information to act on at each step in the game. For example, in a two player continuous game that is sequential, the second player can act in response to the action taken by the first player. However, this is not possible in a simultaneous game where both players act at the same time.

In algorithmic game theory, a succinct game or a succinctly representable game is a game which may be represented in a size much smaller than its normal form representation. Without placing constraints on player utilities, describing a game of players, each facing strategies, requires listing utility values. Even trivial algorithms are capable of finding a Nash equilibrium in a time polynomial in the length of such a large input. A succinct game is of polynomial type if in a game represented by a string of length n the number of players, as well as the number of strategies of each player, is bounded by a polynomial in n.

A Markov perfect equilibrium is an equilibrium concept in game theory. It has been used in analyses of industrial organization, macroeconomics, and political economy. It is a refinement of the concept of subgame perfect equilibrium to extensive form games for which a pay-off relevant state space can be identified. The term appeared in publications starting about 1988 in the work of economists Jean Tirole and Eric Maskin.

References

Bibliography