This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations .(July 2023) |
In game theory, fictitious play is a learning rule first introduced by George W. Brown. In it, each player presumes that the opponents are playing stationary (possibly mixed) strategies. At each round, each player thus best responds to the empirical frequency of play of their opponent. Such a method is of course adequate if the opponent indeed uses a stationary strategy, while it is flawed if the opponent's strategy is non-stationary. The opponent's strategy may for example be conditioned on the fictitious player's last move.
Brown first introduced fictitious play as an explanation for Nash equilibrium play. He imagined that a player would "simulate" play of the game in their mind and update their future play based on this simulation; hence the name fictitious play. In terms of current use, the name is a bit of a misnomer, since each play of the game actually occurs. The play is not exactly fictitious.
In fictitious play, strict Nash equilibria are absorbing states. That is, if at any time period all the players play a Nash equilibrium, then they will do so for all subsequent rounds. (Fudenberg and Levine 1998, Proposition 2.1) In addition, if fictitious play converges to any distribution, those probabilities correspond to a Nash equilibrium of the underlying game. (Proposition 2.2)
A | B | C | |
---|---|---|---|
a | 0, 0 | 2, 1 | 1, 2 |
b | 1, 2 | 0, 0 | 2, 1 |
c | 2, 1 | 1, 2 | 0, 0 |
Therefore, the interesting question is, under what circumstances does fictitious play converge? The process will converge for a 2-person game if:
Fictitious play does not always converge, however. Shapley (1964) proved that in the game pictured here (a nonzero-sum version of Rock, Paper, Scissors), if the players start by choosing (a, B), the play will cycle indefinitely.
Berger (2007) states that "what modern game theorists describe as 'fictitious play' is not the learning process that George W. Brown defined in his 1951 paper": Brown's "original version differs in a subtle detail..." in that modern usage involves the players updating their beliefs simultaneously, whereas Brown described the players updating alternatingly. Berger then uses Brown's original form to present a simple and intuitive proof of convergence in the case of two-player nondegenerate ordinal potential games.
The term "fictitious" had earlier been given another meaning in game theory. Von Neumann and Morgenstern [1944] defined a "fictitious player" as a player with only one strategy, added to an n-player game to turn it into a (n + 1)-player zero-sum game.
Game theory is the study of mathematical models of strategic interactions. It has applications in many fields of social science, and is used extensively in economics, logic, systems science and computer science. Initially, game theory addressed two-person zero-sum games, in which a participant's gains or losses are exactly balanced by the losses and gains of the other participant. In the 1950s, it was extended to the study of non zero-sum games, and was eventually applied to a wide range of behavioral relations. It is now an umbrella term for the science of rational decision making in humans, animals, and computers.
Zero-sum game is a mathematical representation in game theory and economic theory of a situation that involves two competing entities, where the result is an advantage for one side and an equivalent loss for the other. In other words, player one's gain is equivalent to player two's loss, with the result that the net improvement in benefit of the game is zero.
In game theory, the Nash equilibrium is the most commonly-used solution concept for non-cooperative games. A Nash equilibrium is a situation where no player could gain by changing their own strategy. The idea of Nash equilibrium dates back to the time of Cournot, who in 1838 applied it to his model of competition in an oligopoly.
In game theory, the best response is the strategy which produces the most favorable outcome for a player, taking other players' strategies as given. The concept of a best response is central to John Nash's best-known contribution, the Nash equilibrium, the point at which each player in a game has selected the best response to the other players' strategies.
Lloyd Stowell Shapley was an American mathematician and Nobel Memorial Prize-winning economist. He contributed to the fields of mathematical economics and especially game theory. Shapley is generally considered one of the most important contributors to the development of game theory since the work of von Neumann and Morgenstern. With Alvin E. Roth, Shapley won the 2012 Nobel Memorial Prize in Economic Sciences "for the theory of stable allocations and the practice of market design."
David Gale was an American mathematician and economist. He was a professor emeritus at the University of California, Berkeley, affiliated with the departments of mathematics, economics, and industrial engineering and operations research. He has contributed to the fields of mathematical economics, game theory, and convex analysis.
In game theory, a non-cooperative game is a game in which there are no external rules or binding agreements that enforce the cooperation of the players. A non-cooperative game is typically used to model a competitive environment. This is stated in various accounts most prominent being John Nash's 1951 paper in the journal Annals of Mathematics.
In game theory, a solution concept is a formal rule for predicting how a game will be played. These predictions are called "solutions", and describe which strategies will be adopted by players and, therefore, the result of the game. The most commonly used solution concepts are equilibrium concepts, most famously Nash equilibrium.
In game theory, a dominant strategy is a strategy that is better than any other strategy for one player, no matter how that player's opponent will play. Some very simple games can be solved using dominance.
In game theory, folk theorems are a class of theorems describing an abundance of Nash equilibrium payoff profiles in repeated games. The original Folk Theorem concerned the payoffs of all the Nash equilibria of an infinitely repeated game. This result was called the Folk Theorem because it was widely known among game theorists in the 1950s, even though no one had published it. Friedman's (1971) Theorem concerns the payoffs of certain subgame-perfect Nash equilibria (SPE) of an infinitely repeated game, and so strengthens the original Folk Theorem by using a stronger equilibrium concept: subgame-perfect Nash equilibria rather than Nash equilibria.
In game theory, a repeated game is an extensive form game that consists of a number of repetitions of some base game. The stage game is usually one of the well-studied 2-person games. Repeated games capture the idea that a player will have to take into account the impact of their current action on the future actions of other players; this impact is sometimes called their reputation. Single stage game or single shot game are names for non-repeated games.
In game theory, a correlated equilibrium is a solution concept that is more general than the well known Nash equilibrium. It was first discussed by mathematician Robert Aumann in 1974. The idea is that each player chooses their action according to their private observation of the value of the same public signal. A strategy assigns an action to every possible observation a player can make. If no player would want to deviate from their strategy, the distribution from which the signals are drawn is called a correlated equilibrium.
In game theory, the purification theorem was contributed by Nobel laureate John Harsanyi in 1973. The theorem justifies a puzzling aspect of mixed strategy Nash equilibria: each player is wholly indifferent between each of the actions he puts non-zero weight on, yet he mixes them so as to make every other player also indifferent.
Hobart Peyton Young is an American game theorist and economist known for his contributions to evolutionary game theory and its application to the study of institutional and technological change, as well as the theory of learning in games. He is currently centennial professor at the London School of Economics, James Meade Professor of Economics Emeritus at the University of Oxford, professorial fellow at Nuffield College Oxford, and research principal at the Office of Financial Research at the U.S. Department of the Treasury.
Risk dominance and payoff dominance are two related refinements of the Nash equilibrium (NE) solution concept in game theory, defined by John Harsanyi and Reinhard Selten. A Nash equilibrium is considered payoff dominant if it is Pareto superior to all other Nash equilibria in the game.1 When faced with a choice among equilibria, all players would agree on the payoff dominant equilibrium since it offers to each player at least as much payoff as the other Nash equilibria. Conversely, a Nash equilibrium is considered risk dominant if it has the largest basin of attraction. This implies that the more uncertainty players have about the actions of the other player(s), the more likely they will choose the strategy corresponding to it.
In game theory, a game is said to be a potential game if the incentive of all players to change their strategy can be expressed using a single global function called the potential function. The concept originated in a 1996 paper by Dov Monderer and Lloyd Shapley.
In game theory, self-confirming equilibrium is a generalization of Nash equilibrium for extensive form games, in which players correctly predict the moves their opponents make, but may have misconceptions about what their opponents would do at information sets that are never reached when the equilibrium is played. Self-confirming equilibrium is motivated by the idea that if a game is played repeatedly, the players will revise their beliefs about their opponents' play if and only if they observe these beliefs to be wrong.
Congestion games (CG) are a class of games in game theory. They represent situations which commonly occur in roads, communication networks, oligopoly markets and natural habitats. There is a set of resources ; there are several players who need resources ; each player chooses a subset of these resources ; the delay in each resource is determined by the number of players choosing a subset that contains this resource. The cost of each player is the sum of delays among all resources he chooses. Naturally, each player wants to minimize his own delay; however, each player's choices impose a negative externality on the other players, which may lead to inefficient outcomes.
Jean-François Mertens was a Belgian game theorist and mathematical economist.