In game theory, the electronic mail game is an example of an "almost common knowledge" incomplete information game. It illustrates the apparently paradoxical [1] situation where arbitrarily close approximations to common knowledge lead to very different strategical implications from that of perfect common knowledge. Intuitively, it shows that arbitrarily long but finite chains of "I know that you know that I know that you know..." are fundamentally different from infinite ones.
It was first introduced by Ariel Rubinstein in 1989. [2]
The electronic mail game is a coordination game of incomplete information. Players 1 (she) and 2 (he) can choose between actions and . There are two states of the world and , which happen with respective probabilities and , with . The payoffs for each action profile in each of those states are:
|
|
where . Players would like to coordinate to play in state of the world , and to play in . If they coordinate in the wrong state, they only get payoff; but if they choose different actions, the player who chose gets a negative payoff of .
Player 1 knows the true state of nature, whereas Player 2 does not. Without communicating, the highest expected payoff they can achieve is , by always choosing . If the state of the world were common knowledge, both players would be able to achieve payoff .
Now assume that the players communicate via emails. Once Player 1 discovers the state of nature, her computer automatically sends an email to Player 2 informing him of the true state; Player 2's computer then automatically replies with a confirmation that he received the information; Player 1's computer then automatically replies with a confirmation that she received the information that he received the information, and so on. This mimics the idea of a "I know that you know that I know that you know..." chain.
However, there is an arbitrarily small probability that some technical failure will happen and one of those emails will not arrive at its destination, after which communication will cease. If that happens, the last player to send the message does not know if 1) the other player did not get the last message, or 2) the other player got the last message, but could not send the confirmation email due to the technical failure.
Let be the number of messages that were sent by Player 's computer — since that information is only observed by Player , we can think of as their Harsanyi type. In terms of choice, players only observe and then must choose an action . A strategy in the electronic mail game is thus defined as a function from to .
The distribution of types is given by the following probabilities :
The equilibrium concept to be used is that of a Bayesian Nash Equilibrium (BNE). Rubinstein showed that, no matter how small the chance of failure and no matter how many confirmation emails were sent, both players always choose to play , even if they know that the state of nature is .
Proposition: There is only one BNE where Player 1 plays when the state of nature is . In this equilibrium, both players play , independently of their types. [2]
The result is counterintuitive, since both know that the true state is , and they can have arbitrarily precise knowledge of "knowing that the other player knows that they know that the other player knows..." that the state is . Still, since this chain of information eventually stops, their equilibrium best response still is to always play .
In game theory, the Nash equilibrium is the most commonly-used solution concept for non-cooperative games. A Nash equilibrium is a situation where no player could gain by changing their own strategy. The idea of Nash equilibrium dates back to the time of Cournot, who in 1838 applied it to his model of competition in an oligopoly.
In mathematics, an infinite series of numbers is said to converge absolutely if the sum of the absolute values of the summands is finite. More precisely, a real or complex series is said to converge absolutely if for some real number Similarly, an improper integral of a function, is said to converge absolutely if the integral of the absolute value of the integrand is finite—that is, if A convergent series that is not absolutely convergent is called conditionally convergent.
In mathematical logic, the compactness theorem states that a set of first-order sentences has a model if and only if every finite subset of it has a model. This theorem is an important tool in model theory, as it provides a useful method for constructing models of any set of sentences that is finitely consistent.
Various types of stability may be discussed for the solutions of differential equations or difference equations describing dynamical systems. The most important type is that concerning the stability of solutions near to a point of equilibrium. This may be discussed by the theory of Aleksandr Lyapunov. In simple terms, if the solutions that start out near an equilibrium point stay near forever, then is Lyapunov stable. More strongly, if is Lyapunov stable and all solutions that start out near converge to , then is said to be asymptotically stable. The notion of exponential stability guarantees a minimal rate of decay, i.e., an estimate of how quickly the solutions converge. The idea of Lyapunov stability can be extended to infinite-dimensional manifolds, where it is known as structural stability, which concerns the behavior of different but "nearby" solutions to differential equations. Input-to-state stability (ISS) applies Lyapunov notions to systems with inputs.
In mathematics, the Hausdorff distance, or Hausdorff metric, also called Pompeiu–Hausdorff distance, measures how far two subsets of a metric space are from each other. It turns the set of non-empty compact subsets of a metric space into a metric space in its own right. It is named after Felix Hausdorff and Dimitrie Pompeiu.
In game theory, a cooperative game is a game with groups of players who form binding “coalitions” with external enforcement of cooperative behavior. This is different from non-cooperative games in which there is either no possibility to forge alliances or all agreements need to be self-enforcing.
In information theory, Shannon's source coding theorem establishes the statistical limits to possible data compression for data whose source is an independent identically-distributed random variable, and the operational meaning of the Shannon entropy.
In game theory, trembling hand perfect equilibrium is a type of refinement of a Nash equilibrium that was first proposed by Reinhard Selten. A trembling hand perfect equilibrium is an equilibrium that takes the possibility of off-the-equilibrium play into account by assuming that the players, through a "slip of the hand" or tremble, may choose unintended strategies, albeit with negligible probability.
In game theory, folk theorems are a class of theorems describing an abundance of Nash equilibrium payoff profiles in repeated games. The original Folk Theorem concerned the payoffs of all the Nash equilibria of an infinitely repeated game. This result was called the Folk Theorem because it was widely known among game theorists in the 1950s, even though no one had published it. Friedman's (1971) Theorem concerns the payoffs of certain subgame-perfect Nash equilibria (SPE) of an infinitely repeated game, and so strengthens the original Folk Theorem by using a stronger equilibrium concept: subgame-perfect Nash equilibria rather than Nash equilibria.
In mathematics, in particular in algebraic geometry and differential geometry, Dolbeault cohomology (named after Pierre Dolbeault) is an analog of de Rham cohomology for complex manifolds. Let M be a complex manifold. Then the Dolbeault cohomology groups depend on a pair of integers p and q and are realized as a subquotient of the space of complex differential forms of degree (p,q).
In game theory, a game is said to be a potential game if the incentive of all players to change their strategy can be expressed using a single global function called the potential function. The concept originated in a 1996 paper by Dov Monderer and Lloyd Shapley.
In game theory, an epsilon-equilibrium, or near-Nash equilibrium, is a strategy profile that approximately satisfies the condition of Nash equilibrium. In a Nash equilibrium, no player has an incentive to change his behavior. In an approximate Nash equilibrium, this requirement is weakened to allow the possibility that a player may have a small incentive to do something different. This may still be considered an adequate solution concept, assuming for example status quo bias. This solution concept may be preferred to Nash equilibrium due to being easier to compute, or alternatively due to the possibility that in games of more than 2 players, the probabilities involved in an exact Nash equilibrium need not be rational numbers.
In game theory, a stochastic game, introduced by Lloyd Shapley in the early 1950s, is a repeated game with probabilistic transitions played by one or more players. The game is played in a sequence of stages. At the beginning of each stage the game is in some state. The players select actions and each player receives a payoff that depends on the current state and the chosen actions. The game then moves to a new random state whose distribution depends on the previous state and the actions chosen by the players. The procedure is repeated at the new state and play continues for a finite or infinite number of stages. The total payoff to a player is often taken to be the discounted sum of the stage payoffs or the limit inferior of the averages of the stage payoffs.
In the mathematical theory of artificial neural networks, universal approximation theorems are theorems of the following form: Given a family of neural networks, for each function from a certain function space, there exists a sequence of neural networks from the family, such that according to some criterion. That is, the family of neural networks is dense in the function space.
In the mathematical theory of games, in particular the study of zero-sum continuous games, not every game has a minimax value. This is the expected value to one of the players when both play a perfect strategy.
In mathematics, the Levi-Civita field, named after Tullio Levi-Civita, is a non-Archimedean ordered field; i.e., a system of numbers containing infinite and infinitesimal quantities. It is usually denoted .
In game theory, the price of stability (PoS) of a game is the ratio between the best objective function value of one of its equilibria and that of an optimal outcome. The PoS is relevant for games in which there is some objective authority that can influence the players a bit, and maybe help them converge to a good Nash equilibrium. When measuring how efficient a Nash equilibrium is in a specific game we often also talk about the price of anarchy (PoA), which is the ratio between the worst objective function value of one of its equilibria and that of an optimal outcome.
Congestion games (CG) are a class of games in game theory. They represent situations which commonly occur in roads, communication networks, oligopoly markets and natural habitats. There is a set of resources ; there are several players who need resources ; each player chooses a subset of these resources ; the delay in each resource is determined by the number of players choosing a subset that contains this resource. The cost of each player is the sum of delays among all resources he chooses. Naturally, each player wants to minimize his own delay; however, each player's choices impose a negative externality on the other players, which may lead to inefficient outcomes.
Network games of incomplete information represent strategic network formation when agents do not know in advance their neighbors, i.e. the network structure and the value stemming from forming links with neighboring agents. In such a setting, agents have prior beliefs about the value of attaching to their neighbors; take their action based on their prior belief and update their belief based on the history of the game. While games with a fully known network structure are widely applicable, there are many applications when players act without fully knowing with whom they interact or what their neighbors’ action will be.
In mathematics, a square-difference-free set is a set of natural numbers, no two of which differ by a square number. Hillel Furstenberg and András Sárközy proved in the late 1970s the Furstenberg–Sárközy theorem of additive number theory showing that, in a certain sense, these sets cannot be very large. In the game of subtract a square, the positions where the next player loses form a square-difference-free set. Another square-difference-free set is obtained by doubling the Moser–de Bruijn sequence.