Monotonicity (mechanism design)

Last updated

In mechanism design, monotonicity is a property of a social choice function. It is a necessary condition for being able to implement such a function using a strategyproof mechanism. Its verbal description is: [1]

Contents

If changing one agent's type (while keeping the types of other agents fixed) changes the outcome under the social choice function, then the resulting difference in utilities of the new and original outcomes evaluated at the new type of this agent must be at least as much as this difference in utilities evaluated at the original type of this agent.

In other words: [2] :227

If the social choice changes when a single player changes his valuation, then it must be because the player increased his value of the new choice relative to his value of the old choice.

Notation

There is a set of possible outcomes.

There are agents which have different valuations for each outcome. The valuation of agent is represented as a function:which expresses the value it assigns to each alternative.

The vector of all value-functions is denoted by .

For every agent , the vector of all value-functions of the other agents is denoted by . So .

A social choice function is a function that takes as input the value-vector and returns an outcome . It is denoted by or .

In mechanisms without money

A social choice function satisfies the strong monotonicity property (SMON) if for every agent and every , if:then: (by the initial preferences, the agent prefers the initial outcome). (by the final preferences, the agent prefers the final outcome). Or equivalently:

Necessity

If there exists a strategyproof mechanism without money, with an outcome function , then this function must be SMON.

PROOF: Fix some agent and some valuation vector . Strategyproofness means that an agent with real valuation weakly prefers to declare than to lie and declare ; hence: Similarly, an agent with real valuation weakly prefers to declare than to lie and declare ; hence:

In mechanisms with money

When the mechanism is allowed to use money, the SMON property is no longer necessary for implementability, since the mechanism can switch to an alternative which is less preferable for an agent and compensate that agent with money.

A social choice function satisfies the weak monotonicity property (WMON) if for every agent and every , if:then:

Necessity

If there exists a strategyproof mechanism with an outcome function , then this function must be WMON.

PROOF: [2] :227 Fix some agent and some valuation vector . A strategyproof mechanism has a price function , that determines how much payment agent receives when the outcome of the mechanism is ; this price depends on the outcome but must not depend directly on . Strategyproofness means that a player with valuation weakly prefers to declare over declaring ; hence:Similarly, a player with valuation weakly prefers to declare over declaring ; hence:Subtracting the second inequality from the first gives the WMON property.

Sufficiency

Monotonicity is not always a sufficient condition for implementability, but there are some important cases in it is sufficient (i.e, every WMON social-choice function can be implemented):

Examples

  1. When agents have single peaked preferences, the median social-choice function (selecting the median among the outcomes that are best for the agents) is strongly monotonic. Indeed, the mechanism selecting the median vote is a truthful mechanism without money. See median voting rule.
  2. When agents have general preferences represented by cardinal utility functions, the utilitarian social-choice function (selecting the outcome that maximizes the sum of the agents' valuations) is not strongly-monotonic but it is weakly monotonic. Indeed, it can be implemented by the VCG mechanism, which is a truthful mechanism with money.
  3. In job-scheduling, the makespan-minimization social-choice function is not strongly-monotonic nor weakly-monotonic. Indeed, it cannot be implemented by a truthful mechanism; see truthful job scheduling.

See also

Related Research Articles

<span class="mw-page-title-main">Mechanism design</span> Field of economics and game theory

Mechanism design, sometimes called implementation theory or institutionaldesign, is a branch of economics, social choice, and game theory that deals with designing game forms to implement a given social choice function. Because it starts with the end of the game and then works backwards to find a game that implements it, it is sometimes described as reverse game theory.

In mechanism design, a strategyproof (SP) mechanism is a game form in which each player has a weakly-dominant strategy, so that no player can gain by "spying" over the other players to know what they are going to play. When the players have private information, and the strategy space of each player consists of the possible information values, a truthful mechanism is a game in which revealing the true information is a weakly-dominant strategy for each player. An SP mechanism is also called dominant-strategy-incentive-compatible (DSIC), to distinguish it from other kinds of incentive compatibility.

<span class="mw-page-title-main">Double auction</span> Process of buying and selling goods

A double auction is a process of buying and selling goods with multiple sellers and multiple buyers. Potential buyers submit their bids and potential sellers submit their ask prices to the market institution, and then the market institution chooses some price p that clears the market: all the sellers who asked less than p sell and all buyers who bid more than p buy at this price p. Buyers and sellers that bid or ask for exactly p are also included. A common example of a double auction is stock exchange.

A mechanism is called incentive-compatible (IC) or truthful if every participant can achieve their own best outcome by acting according to their true preferences. For example, there is incentive compatibility if high-risk clients are better off in identifying themselves as high-risk to insurance firms, who only sell discounted insurance to high-risk clients. Likewise, they would be worse off if they pretend to be low-risk. Low-risk clients who pretend to be high-risk would also be worse off.

The revelation principle is a fundamental result in mechanism design, social choice theory, and game theory which shows it is always possible to design a strategy-resistant implementation of a social decision-making mechanism. It can be seen as a kind of mirror image to Gibbard's theorem. The revelation principle says that if a social choice function can be implemented with some non-honest mechanism—one where players have an incentive to lie—the same function can be implemented by an incentive-compatible (honesty-promoting) mechanism with the same equilibrium outcome (payoffs).

<span class="mw-page-title-main">Revenue equivalence</span>

Revenue equivalence is a concept in auction theory that states that given certain conditions, any mechanism that results in the same outcomes also has the same expected revenue.

<span class="mw-page-title-main">Vickrey–Clarke–Groves auction</span> Type of sealed-bid multiple-item auction

A Vickrey–Clarke–Groves (VCG) auction is a type of sealed-bid auction of multiple items. Bidders submit bids that report their valuations for the items, without knowing the bids of the other bidders. The auction system assigns the items in a socially optimal manner: it charges each individual the harm they cause to other bidders. It gives bidders an incentive to bid their true valuations, by ensuring that the optimal strategy for each bidder is to bid their true valuations of the items; it can be undermined by bidder collusion and in particular in some circumstances by a single bidder making multiple bids under different names. It is a generalization of a Vickrey auction for multiple items.

Single-peaked preferences are a class of preference relations. A group has single-peaked preferences over a set of outcomes if the outcomes can be ordered along a line such that:

  1. Each agent has a "best outcome" in the set, and
  2. For each agent, outcomes that are further from his or her best outcome are preferred less.

In mechanism design, a Vickrey–Clarke–Groves (VCG) mechanism is a generic truthful mechanism for achieving a socially optimal solution. It is a generalization of a Vickrey–Clarke–Groves auction. A VCG auction performs a specific task: dividing items among people. A VCG mechanism is more general: it can be used to select any outcome out of a set of possible outcomes.

In mechanism design, an agent is said to have single-parameter utility if his valuation of the possible outcomes can be represented by a single number. For example, in an auction for a single item, the utilities of all agents are single-parametric, since they can be represented by their monetary evaluation of the item. In contrast, in a combinatorial auction for two or more related items, the utilities are usually not single-parametric, since they are usually represented by their evaluations to all possible bundles of items.

A Bayesian-optimal mechanism (BOM) is a mechanism in which the designer does not know the valuations of the agents for whom the mechanism is designed, but the designer knows that they are random variables and knows the probability distribution of these variables.

Rental harmony is a kind of a fair division problem in which indivisible items and a fixed monetary cost have to be divided simultaneously. The housemates problem and room-assignment-rent-division are alternative names to the same problem.

In mechanism design and auction theory, a profit extraction mechanism is a truthful mechanism whose goal is to win a pre-specified amount of profit, if it is possible.

In economics and mechanism design, a cost-sharing mechanism is a process by which several agents decide on the scope of a public product or service, and how much each agent should pay for it. Cost-sharing is easy when the marginal cost is constant: in this case, each agent who wants the service just pays its marginal cost. Cost-sharing becomes more interesting when the marginal cost is not constant. With increasing marginal costs, the agents impose a negative externality on each other; with decreasing marginal costs, the agents impose a positive externality on each other. The goal of a cost-sharing mechanism is to divide this externality among the agents.

In economics, dichotomous preferences (DP) are preference relations that divide the set of alternatives to two subsets: "Good" versus "Bad".

Random priority (RP), also called Random serial dictatorship (RSD), is a procedure for fair random assignment - dividing indivisible items fairly among people.

<span class="mw-page-title-main">Price of anarchy in auctions</span>

The Price of Anarchy (PoA) is a concept in game theory and mechanism design that measures how the social welfare of a system degrades due to selfish behavior of its agents. It has been studied extensively in various contexts, particularly in auctions.

Truthful resource allocation is the problem of allocating resources among agents with different valuations over the resources, such that agents are incentivized to reveal their true valuations over the resources.

Donor coordination is a problem in social choice. There are several donors, each of whom wants to donate some money. Each donor supports a different set of targets. The goal is to distribute the total donated amount among the various targets in a way that respects the donors' preferences.

The median voting rule or median mechanism is a rule for group decision-making along a one-dimensional domain. Each person votes by writing down his/her ideal value, and the rule selects a single value which is the median of all votes.

References

  1. 1 2 Bikhchandani, Sushil; Chatterji, Shurojit; Lavi, Ron; Mu'Alem, Ahuva; Nisan, Noam; Sen, Arunava (2006). "Weak Monotonicity Characterizes Deterministic Dominant-Strategy Implementation" (PDF). Econometrica. 74 (4): 1109. doi:10.1111/j.1468-0262.2006.00695.x. S2CID   6210226.
  2. 1 2 Vazirani, Vijay V.; Nisan, Noam; Roughgarden, Tim; Tardos, Éva (2007). Algorithmic Game Theory (PDF). Cambridge, UK: Cambridge University Press. ISBN   0-521-87282-0.
  3. 1 2 "Monotonicity and Implementability". Econometrica. 78 (5): 1749–1772. 2010. doi:10.3982/ECTA8882. S2CID   1024035.