Cardinal utility

Last updated

In economics, a cardinal utility expresses not only which of two outcomes is preferred, but also the intensity of preferences, i.e. how much better or worse one outcome is compared to another. [1]

Contents

In consumer choice theory, economists originally attempted to replace cardinal utility with the apparently weaker concept of ordinal utility. Cardinal utility appears to impose the assumption that levels of absolute satisfaction exist, so magnitudes of increments to satisfaction can be compared across different situations. However, economists in the 1940s proved that under mild conditions, ordinal utilities imply cardinal utilities. This result is now known as the von Neumann–Morgenstern utility theorem; many similar utility representation theorems exist in other contexts.

History

In 1738, Daniel Bernoulli was the first to theorize about the marginal value of money. He assumed that the value of an additional amount is inversely proportional to the pecuniary possessions which a person already owns. Since Bernoulli tacitly assumed that an interpersonal measure for the utility reaction of different persons can be discovered, he was then inadvertently using an early conception of cardinality. [2]

Bernoulli's imaginary logarithmic utility function and Gabriel Cramer's U = W1/2 function were conceived at the time not for a theory of demand but to solve the St. Petersburg's game. Bernoulli assumed that "a poor man generally obtains more utility than a rich man from an equal gain" [3] an approach that is more profound than the simple mathematical expectation of money as it involves a law of moral expectation.

Early theorists of utility considered that it had physically quantifiable attributes. They thought that utility behaved like the magnitudes of distance or time, in which the simple use of a ruler or stopwatch resulted in a distinguishable measure. "Utils" was the name actually given to the units in a utility scale.

In the Victorian era many aspects of life were succumbing to quantification. [4] The theory of utility soon began to be applied to moral-philosophy discussions. The essential idea in utilitarianism is to judge people's decisions by looking at their change in utils and measure whether they are better off. The main forerunner of the utilitarian principles since the end of the 18th century was Jeremy Bentham, who believed that utility could be measured by some complex introspective examination and that it should guide the design of social policies and laws. For Bentham a scale of pleasure has as a unit of intensity "the degree of intensity possessed by that pleasure which is the faintest of any that can be distinguished to be pleasure"; [5] he also stated that as these pleasures increase in intensity, higher and higher numbers could represent them. [5] In the 18th and 19th centuries utility's measurability received plenty of attention from European schools of political economy, most notably through the work of marginalists (e.g., William Stanley Jevons, [6] Léon Walras, Alfred Marshall). However, neither of them offered solid arguments to support the assumption of measurability. In Jevon's case he added to the later editions of his work a note on the difficulty of estimating utility with accuracy. [5] Walras, too, struggled for many years before he could even attempt to formalize the assumption of measurability. [7] Marshall was ambiguous about the measurability of hedonism because he adhered to its psychological-hedonistic properties but he also argued that it was "unrealistical" to do so. [8]

Supporters of cardinal utility theory in the 19th century suggested that market prices reflect utility, although they did not say much about their compatibility (i.e., prices being objective while utility is subjective). Accurately measuring subjective pleasure (or pain) seemed awkward, as the thinkers of the time were surely aware. They renamed utility in imaginative ways such as subjective wealth, overall happiness, moral worth, psychic satisfaction, or ophélimité. During the second half of the 19th century many studies related to this fictional magnitudeutilitywere conducted, but the conclusion was always the same: it proved impossible to definitively say whether a good is worth 50, 75, or 125 utils to a person, or to two different people. Moreover, the mere dependence of utility on notions of hedonism led academic circles to be skeptical of this theory. [9]

Francis Edgeworth was also aware of the need to ground the theory of utility into the real world. He discussed the quantitative estimates that a person can make of his own pleasure or the pleasure of others, borrowing methods developed in psychology to study hedonic measurement: psychophysics. This field of psychology was built on work by Ernst H. Weber, but around the time of World War I, psychologists grew discouraged of it. [10] [11]

In the late 19th century, Carl Menger and his followers from the Austrian school of economics undertook the first successful departure from measurable utility, in the clever form of a theory of ranked uses. Despite abandoning the thought of quantifiable utility (i.e. psychological satisfaction mapped into the set of real numbers) Menger managed to establish a body of hypothesis about decision-making, resting solely on a few axioms of ranked preferences over the possible uses of goods and services. His numerical examples are "illustrative of ordinal, not cardinal, relationships". [12]

However, there are other interpretations of Carl Menger's work. Ivan Moscati and J. Huston McCulloch argue that Menger was a classical cardinalist, as his numerical examples are not merely illustrative but represent explicit arithmetic proportions of value between economic goods. [13] [14] Arithmetic proportions, sums, and multiplications are inherently cardinal and do not exist in an ordinal paradigm. Menger also explicitly states the following: "Only the satisfaction of our needs has direct and immediate significance to us. In each concrete instance, this significance is measured by the importance of the various satisfactions for our lives and well-being. We next attribute the exact quantitative magnitude of this importance to the specific goods on which we are conscious of being directly dependent for the satisfactions in question" [15]

Around the turn of the 19th century neoclassical economists started to embrace alternative ways to deal with the measurability issue. By 1900, Pareto was hesitant about accurately measuring pleasure or pain because he thought that such a self-reported subjective magnitude lacked scientific validity. He wanted to find an alternative way to treat utility that did not rely on erratic perceptions of the senses. [16] Pareto's main contribution to ordinal utility was to assume that higher indifference curves have greater utility, but how much greater does not need to be specified to obtain the result of increasing marginal rates of substitution.

The works and manuals of Vilfredo Pareto, Francis Edgeworth, Irving Fischer, and Eugene Slutsky departed from cardinal utility and served as pivots for others to continue the trend on ordinality. According to Viner, [17] these economic thinkers came up with a theory that explained the negative slopes of demand curves. Their method avoided the measurability of utility by constructing some abstract indifference curve map.

During the first three decades of the 20th century, economists from Italy and Russia became familiar with the Paretian idea that utility does not need to be cardinal. According to Schultz, [18] by 1931 the idea of ordinal utility was not yet embraced by American economists. The breakthrough occurred when a theory of ordinal utility was put together by John Hicks and Roy Allen in 1934. [19] In fact pages 54–55 from this paper contain the first use ever of the term "cardinal utility". [20] The first treatment of a class of utility functions preserved by affine transformations, though, was made in 1934 by Oskar Lange. [21]

In 1944 Frank Knight argued extensively for cardinal utility. In the decade of 1960 Parducci studied human judgements of magnitudes and suggested a range-frequency theory. [22] Since the late 20th century economists are having a renewed interest in the measurement issues of happiness. [23] [24] This field has been developing methods, surveys and indices to measure happiness.

Several properties of cardinal utility functions can be derived using tools from measure theory and set theory.

Measurability

A utility function is considered to be measurable, if the strength of preference or intensity of liking of a good or service is determined with precision by the use of some objective criteria. For example, suppose that eating an apple gives to a person exactly half the pleasure of that of eating an orange. This would be a measurable utility if and only if the test employed for its direct measurement is based on an objective criterion that could let any external observer repeat the results accurately. [25] One hypothetical way to achieve this would be by the use of a hedonometer, which was the instrument suggested by Edgeworth to be capable of registering the height of pleasure experienced by people, diverging according to a law of errors. [10]

Before the 1930s, the measurability of utility functions was erroneously labeled as cardinality by economists. A different meaning of cardinality was used by economists who followed the formulation of Hicks-Allen, where two cardinal utility functions are considered the same if they preserve preference orderings uniquely up to positive affine transformations. [26] [27] Around the end of the 1940s, some economists even rushed to argue that von Neumann–Morgenstern axiomatization of expected utility had resurrected measurability. [16]

The confusion between cardinality and measurability was not to be solved until the works of Armen Alchian, [28] William Baumol, [29] and John Chipman. [30] The title of Baumol's paper, "The cardinal utility which is ordinal", expressed well the semantic mess of the literature at the time.

It is helpful to consider the same problem as it appears in the construction of scales of measurement in the natural sciences. [31] In the case of temperature there are two degrees of freedom for its measurement  the choice of unit and the zero. Different temperature scales map its intensity in different ways. In the celsius scale the zero is chosen to be the point where water freezes, and likewise, in cardinal utility theory one would be tempted to think that the choice of zero would correspond to a good or service that brings exactly 0 utils. However this is not necessarily true. The mathematical index remains cardinal, even if the zero gets moved arbitrarily to another point, or if the choice of scale is changed, or if both the scale and the zero are changed. Every measurable entity maps into a cardinal function but not every cardinal function is the result of the mapping of a measurable entity. The point of this example was used to prove that (as with temperature) it is still possible to predict something about the combination of two values of some utility function, even if the utils get transformed into entirely different numbers, as long as it remains a linear transformation.

Von Neumann and Morgenstern stated that the question of measurability of physical quantities was dynamic. For instance, temperature was originally a number only up to any monotone transformation, but the development of the ideal-gas-thermometry led to transformations in which the absolute zero and absolute unit were missing. Subsequent developments of thermodynamics even fixed the absolute zero so that the transformation system in thermodynamics consists only of the multiplication by constants. According to Von Neumann and Morgenstern (1944, p. 23), "For utility the situation seems to be of a similar nature [to temperature]".

The following quote from Alchian served to clarify once and for all[ citation needed ] the real nature of utility functions:

Can we assign a set of numbers (measures) to the various entities and predict that the entity with the largest assigned number (measure) will be chosen? If so, we could christen this measure "utility" and then assert that choices are made so as to maximize utility. It is an easy step to the statement that "you are maximizing your utility", which says no more than that your choice is predictable according to the size of some assigned numbers. For analytical convenience it is customary to postulate that an individual seeks to maximize something subject to some constraints. The thing   or numerical measure of the "thing"  which he seeks to maximize is called "utility". Whether or not utility is of some kind glow or warmth, or happiness, is here irrelevant; all that counts is that we can assign numbers to entities or conditions which a person can strive to realize. Then we say the individual seeks to maximize some function of those numbers. Unfortunately, the term "utility" has by now acquired so many connotations, that it is difficult to realize that for present purposes utility has no more meaning than this.

Armen Alchian, The meaning of utility measurement [28]

Order of preference

In 1955 Patrick Suppes and Muriel Winet solved the issue of the representability of preferences by a cardinal utility function and derived the set of axioms and primitive characteristics required for this utility index to work. [32]

Suppose an agent is asked to rank his preferences of A relative to B and his preferences of B relative to C. If he finds that he can state, for example, that his degree of preference of A to B exceeds his degree of preference of B to C, we could summarize this information by any triplet of numbers satisfying the two inequalities: UA > UB > UC and UAUB > UBUC.

If A and B were sums of money, the agent could vary the sum of money represented by B until he could tell us that he found his degree of preference of A over the revised amount B equal to his degree of preference of B over C. If he finds such a B, then the results of this last operation would be expressed by any triplet of numbers satisfying the relationships UA > UB > UC and UAUB = UBUC. Any two triplets obeying these relationships must be related by a linear transformation; they represent utility indices differing only by scale and origin. In this case, "cardinality" means nothing more being able to give consistent answers to these particular questions. This experiment does not require measurability of utility. Itzhak Gilboa gives a sound explanation of why measurability can never be attained solely by introspection:

It might have happened to you that you were carrying a pile of papers, or clothes, and didn't notice that you dropped a few. The decrease in the total weight you were carrying was probably not large enough for you to notice. Two objects may be too close in terms of weight for us to notice the difference between them. This problem is common to perception in all our senses. If I ask whether two rods are of the same length or not, there are differences that will be too small for you to notice. The same would apply to your perception of sound (volume, pitch), light, temperature, and so forth...

Itzhak Gilboa, Theory of decision under uncertainty [33]

According to this view, those situations where a person just cannot tell the difference between A and B will lead to indifference not because of a consistency of preferences, but because of a misperception of the senses. Moreover, human senses adapt to a given level of stimulation and then register changes from that baseline. [34]

Construction

Suppose a certain agent has a preference ordering over random outcomes (lotteries). If the agent can be queried about his preferences, it is possible to construct a cardinal utility function that represents these preferences. This is the core of the von Neumann–Morgenstern utility theorem.

Applications

Welfare economics

Among welfare economists of the utilitarian school it has been the general tendency to take satisfaction (in some cases, pleasure) as the unit of welfare. If the function of welfare economics is to contribute data which will serve the social philosopher or the statesman in the making of welfare judgments, this tendency leads perhaps, to a hedonistic ethics. [35]

Under this framework, actions (including production of goods and provision of services) are judged by their contributions to the subjective wealth of people. In other words, it provides a way of judging the "greatest good to the greatest number of persons". An act that reduces one person's utility by 75 utils while increasing two others' by 50 utils each has increased overall utility by 25 utils and is thus a positive contribution; one that costs the first person 125 utils while giving the same 50 each to two other people has resulted in a net loss of 25 utils.

If a class of utility functions is cardinal, intrapersonal comparisons of utility differences are allowed. If, in addition, some comparisons of utility are meaningful interpersonally, the linear transformations used to produce the class of utility functions must be restricted across people. An example is cardinal unit comparability. In that information environment, admissible transformations are increasing affine functions and, in addition, the scaling factor must be the same for everyone. This information assumption allows for interpersonal comparisons of utility differences, but utility levels cannot be compared interpersonally because the intercept of the affine transformations may differ across people. [36]

Marginalism

Expected utility theory

This type of indices involves choices under risk. In this case, A, B, and C, are lotteries associated with outcomes. Unlike cardinal utility theory under certainty, in which the possibility of moving from preferences to quantified utility was almost trivial, here it is paramount to be able to map preferences into the set of real numbers, so that the operation of mathematical expectation can be executed. Once the mapping is done, the introduction of additional assumptions would result in a consistent behavior of people regarding fair bets. But fair bets are, by definition, the result of comparing a gamble with an expected value of zero to some other gamble. Although it is impossible to model attitudes toward risk if one doesn't quantify utility, the theory should not be interpreted as measuring strength of preference under certainty. [37]

Construction of the utility function

Suppose that certain outcomes are associated with three states of nature, so that x3 is preferred over x2 which in turn is preferred over x1; this set of outcomes, X, can be assumed to be a calculable money-prize in a controlled game of chance, unique up to one positive proportionality factor depending on the currency unit.

Let L1 and L2 be two lotteries with probabilities p1, p2, and p3 of x1, x2, and x3 respectively being

Assume that someone has the following preference structure under risk:

meaning that L1 is preferred over L2. By modifying the values of p1 and p3 in L1, eventually there will be some appropriate values (L1') for which she is found to be indifferent between it and L2for example

Expected utility theory tells us that

and so

In this example from Majumdar [38] fixing the zero value of the utility index such that the utility of x1 is 0, and by choosing the scale so that the utility of x2 equals 1, gives

Intertemporal utility

Models of utility with several periods, in which people discount future values of utility, need to employ cardinalities in order to have well-behaved utility functions. According to Paul Samuelson the maximization of the discounted sum of future utilities implies that a person can rank utility differences. [39]

Controversies

Some authors have commented on the misleading nature of the terms "cardinal utility" and "ordinal utility", as used in economic jargon:

These terms, which seem to have been introduced by Hicks and Allen (1934), bear scant if any relation to the mathematicians' concept of ordinal and cardinal numbers; rather they are euphemisms for the concepts of order-homomorphism to the real numbers and group-homomorphism to the real numbers.

John Chipman, The foundations of utility [30]

There remain economists who believe that utility, if it cannot be measured, at least can be approximated somewhat to provide some form of measurement, similar to how prices, which have no uniform unit to provide an actual price level, could still be indexed to provide an "inflation rate" (which is actually a level of change in the prices of weighted indexed products). These measures are not perfect but can act as a proxy for the utility. Lancaster's [40] characteristics approach to consumer demand illustrates this point.

Comparison between ordinal and cardinal utility functions

The following table compares the two types of utility functions common in economics:

Level of measurement Represents preferences onUnique up toExistence proved byMostly used in
Ordinal utility Ordinal scaleSure outcomesIncreasing monotone transformation Debreu (1954) Consumer theory under certainty
Cardinal utilityInterval scaleRandom outcomes (lotteries)Increasing monotone linear transformation Von Neumann and Morgenstern (1947) Game theory, choice under uncertainty

See also

Related Research Articles

<span class="mw-page-title-main">Austrian school of economics</span> School of economic thought

The Austrian school is a heterodox school of economic thought that advocates strict adherence to methodological individualism, the concept that social phenomena result primarily from the motivations and actions of individuals along with their self interest. Austrian-school theorists hold that economic theory should be exclusively derived from basic principles of human action.

<span class="mw-page-title-main">Carl Menger</span> Founder of the Austrian School of economics (1840–1921)

Carl Menger von Wolfensgrün was an Austrian economist and the founder of the Austrian school of economics. Menger contributed to the development of the theories of marginalism and marginal utility, which rejected cost-of-production theory of value, such as developed by the classical economists such as Adam Smith and David Ricardo. As a departure from such, he would go on to call his resultant perspective, the subjective theory of value.

<span class="mw-page-title-main">Neoclassical economics</span> Approach to economics

Neoclassical economics is an approach to economics in which the production, consumption, and valuation (pricing) of goods and services are observed as driven by the supply and demand model. According to this line of thought, the value of a good or service is determined through a hypothetical maximization of utility by income-constrained individuals and of profits by firms facing production costs and employing available information and factors of production. This approach has often been justified by appealing to rational choice theory.

In economics, utility is a measure of the satisfaction that a certain person has from a certain state of the world. Over time, the term has been used in at least two different meanings.

<span class="mw-page-title-main">Indifference curve</span> Concept in economics

In economics, an indifference curve connects points on a graph representing different quantities of two goods, points between which a consumer is indifferent. That is, any combinations of two products indicated by the curve will provide the consumer with equal levels of utility, and the consumer has no preference for one combination or bundle of goods over a different combination on the same curve. One can also refer to each point on the indifference curve as rendering the same level of utility (satisfaction) for the consumer. In other words, an indifference curve is the locus of various points showing different combinations of two goods providing equal utility to the consumer. Utility is then a device to represent preferences rather than something from which preferences come. The main use of indifference curves is in the representation of potentially observable demand patterns for individual consumers over commodity bundles.

<span class="mw-page-title-main">Arrow's impossibility theorem</span> Proof all ranked voting rules have spoilers

Arrow's impossibility theorem is a key result in social choice theory, discovered by Kenneth Arrow, showing that no method of obtaining a collective result from the preferences of multiple individuals can simultaneously satisfy all of a certain set of seemingly simple and reasonable conditions. The result is most often cited in election science and voting theory. In this context, Arrow's theorem can be restated as showing that no ranked voting rule can eliminate the spoiler effect. However, Arrow's theorem is substantially broader, and can be applied to other methods of social decision-making besides voting. It therefore generalizes Nicolas de Condorcet's voting paradox, and shows similar problems will exist for any collective decision-making procedure based on relative comparisons.

<span class="mw-page-title-main">Risk aversion</span> Economics theory

In economics and finance, risk aversion is the tendency of people to prefer outcomes with low uncertainty to those outcomes with high uncertainty, even if the average outcome of the latter is equal to or higher in monetary value than the more certain outcome.

<span class="mw-page-title-main">William Stanley Jevons</span> English economist and logician (1835–1882)

William Stanley Jevons was an English economist and logician.

<span class="mw-page-title-main">Social welfare function</span> Function that ranks states of society according to their desirability

In welfare economics and social choice theory, a social welfare function—also called a socialordering, ranking, utility, or choicefunction—is a function that ranks a set of social states by their desirability. Each person's preferences are combined in some way to determine which outcome is considered better by society as a whole. It can be seen as mathematically formalizing Rousseau's idea of a general will.

<span class="mw-page-title-main">Marginalism</span> Concept in economics

Marginalism is a theory of economics that attempts to explain the discrepancy in the value of goods and services by reference to their secondary, or marginal, utility. It states that the reason why the price of diamonds is higher than that of water, for example, owes to the greater additional satisfaction of the diamonds over the water. Thus, while the water has greater total utility, the diamond has greater marginal utility.

<span class="mw-page-title-main">Consumer choice</span> Aspect of economics

The theory of consumer choice is the branch of microeconomics that relates preferences to consumption expenditures and to consumer demand curves. It analyzes how consumers maximize the desirability of their consumption, by maximizing utility subject to a consumer budget constraint. Factors influencing consumers' evaluation of the utility of goods include: income level, cultural factors, product information and physio-psychological factors.

The subjective theory of value (STV) is an economic theory for explaining how the value of goods and services are not only set but also how they can fluctuate over time. The contrasting system is typically known as the labor theory of value.

<span class="mw-page-title-main">Welfare economics</span> Use of microeconomic techniques to evaluate well-being at the aggregate level

Welfare economics is a field of economics that applies microeconomic techniques to evaluate the overall well-being (welfare) of a society.

The expected utility hypothesis is a foundational assumption in mathematical economics concerning decision making under uncertainty. It postulates that rational agents maximize utility, meaning the subjective desirability of their actions. Rational choice theory, a cornerstone of microeconomics, builds this postulate to model aggregate social behaviour.

In economics, an ordinal utility function is a function representing the preferences of an agent on an ordinal scale. Ordinal utility theory claims that it is only meaningful to ask which option is better than the other, but it is meaningless to ask how much better it is or how good it is. All of the theory of consumer decision-making under conditions of certainty can be, and typically is, expressed in terms of ordinal utility.

<span class="mw-page-title-main">Social choice theory</span> Academic discipline

Social choice theory is a branch of welfare economics that analyzes methods of combining individual opinions, beliefs, or preferences to reach a collective decision or create measures of social well-being. It contrasts with political science in that it is a normative field that studies how societies should make decisions, whereas political science is descriptive. Social choice incorporates insights from economics, mathematics, philosophy, political science, and game theory to find the best ways to combine individual preferences into a coherent whole, called a social welfare function.

In mainstream economics, marginal utility describes the change in utility of one unit of a good or service. Marginal utility can be positive, negative, or zero. Negative marginal utility implies that every additional unit consumed of a commodity causes more harm than good, leading to a decrease in overall utility. In contrast, positive marginal utility indicates that every additional unit consumed increases overall utility.

In economics, and in other social sciences, preference refers to an order by which an agent, while in search of an "optimal choice", ranks alternatives based on their respective utility. Preferences are evaluations that concern matters of value, in relation to practical reasoning. Individual preferences are determined by taste, need, ..., as opposed to price, availability or personal income. Classical economics assumes that people act in their best (rational) interest. In this context, rationality would dictate that, when given a choice, an individual will select an option that maximizes their self-interest. But preferences are not always transitive, both because real humans are far from always being rational and because in some situations preferences can form cycles, in which case there exists no well-defined optimal choice. An example of this is Efron dice.

In psychology, economics and philosophy, preference is a technical term usually used in relation to choosing between alternatives. For example, someone prefers A over B if they would rather choose A than B. Preferences are central to decision theory because of this relation to behavior. Some methods such as Ordinal Priority Approach use preference relation for decision-making. As connative states, they are closely related to desires. The difference between the two is that desires are directed at one object while preferences concern a comparison between two alternatives, of which one is preferred to the other.

<span class="mw-page-title-main">Rated voting</span> Electoral systems with independent candidate ratings

Rated, evaluative, graded, or cardinalvotingsystems are a class of voting methods which allow voters to state how strongly they support a candidate, which involves giving each one a grade on a separate scale. Cardinal methods and ordinal methods are the two categories of modern voting systems.

References

  1. Harvey, Charles M. "Aggregation of individuals' preference intensities into social preference intensity", Social Choice and Welfare, January 1999, volume 16, issue 1, pp. 65–79; retrieved 2012-12-12.
  2. Kauder, Emil (1953). "Genesis of the Marginal Utility Theory: From Aristotle to the End of the Eighteenth Century". Economic Journal. 63 (251): 648. doi:10.2307/2226451. JSTOR   2226451.
  3. Samuelson, Paul (1977). "St. Petersburg Paradoxes: Defanged, Dissected, and Historically Described". Journal of Economic Literature. 15 (1): 38. JSTOR   2722712.
  4. Bernstein, Peter (1996). Against the Gods. The Remarkable Story of Risk. New York: John Wiley and Sons. p. 191. ISBN   978-0-4711-2104-6.
  5. 1 2 3 Stigler, George (August 1950). "The Development of Utility Theory. I" (PDF). Journal of Political Economy. 58 (4): 307–327. doi:10.1086/256962. JSTOR   1828885. S2CID   153732595. Archived from the original (PDF) on 2013-09-08. Retrieved 2013-03-06.
  6. Jevons, William Stanley (1862). "Brief Account of a General Mathematical Theory of Political Economy". Journal of the Royal Statistical Society. 29: 282–287.
  7. Jaffé, William (1977). "The Walras-Poincaré Correspondence on the Cardinal Measurability of Utility". Canadian Journal of Economics. 10 (2): 300–307. doi:10.2307/134447. JSTOR   134447.
  8. Martinoia, Rozenn (2003). "That Which is Desired, Which Pleases, and Which Satisfies: Utility According to Alfred Marshall" (PDF). Journal of the History of Economic Thought. 25 (3): 350. doi:10.1080/1042771032000114764. S2CID   31350151 . Retrieved 21 May 2015.
  9. Stigler, George (October 1950). "The Development of Utility Theory. II". Journal of Political Economy. 58 (5): 373–396. doi:10.1086/256980. JSTOR   1825710. S2CID   222450704.
  10. 1 2 Colander, David (Spring 2007). "Retrospectives: Edgeworth's Hedonimeter and the Quest to Measure Utility". Journal of Economic Perspectives. 21 (2): 215–226. doi: 10.1257/jep.21.2.215 . JSTOR   30033725.
  11. McCloskey, Deirdre N. (June 7, 2012). "Happyism". New Republic. Retrieved 11 March 2013.
  12. Stigler, George (April 1937). "The Economics of Carl Menger". Journal of Political Economy. 45 (2): 240. doi:10.1086/255042. JSTOR   1824519. S2CID   154936520.
  13. Moscati, Ivan (2013). "Were Jevons, Menger and Walras Really Cardinalists? On the Notion of Measurement in Utility Theory, Psychology, Mathematics and Other Disciplines, 1870-1910". History of Political Economy. 45 (3): 373–414. doi:10.1215/00182702-2334758.
  14. McCulloch, J. Huston (April 1977). "The Austrian Theory of the Marginal Use and of Ordinal Marginal Utility" (PDF). Zeitschrift für Nationalökonomie. Ohio State University. Retrieved 2024-09-26.
  15. Menger, Carl (2007). Principles of Economics (PDF). Translated by James Dingwall and Bert F. Hoselitz. Ludwig von Mises Institute. p. 152. ISBN   978-1-933550-12-1.
  16. 1 2 Lewin, Shira B. (September 1996). "Economics and Psychology: Lessons for our Own Day from the Early Twentieth Century" (PDF). Journal of Economic Literature. 34 (3): 1293–1323. JSTOR   2729503. Archived from the original (PDF) on 2010-10-11.
  17. Viner, Jacob (August 1925). "The Utility Concept in Value Theory and its Critics". Journal of Political Economy. 33 (4): 369–387. doi:10.1086/253690. JSTOR   1822522. S2CID   153762259.
  18. Schultz, Henry (February 1931). "The Italian School of Mathematical Economics". Journal of Political Economy. 39 (1): 77. doi:10.1086/254172. JSTOR   1821749. S2CID   154718427.
  19. Hicks, John; Allen, Roy (February 1934). "A Reconsideration of the Theory of Value". Economica. 1 (1): 52–76. doi:10.2307/2548574. JSTOR   2548574.
  20. Moscati, Ivan (2012). "How Cardinal Utility Entered Economic Analysis During the Ordinal Revolution" (PDF). Working Paper. Universita Dell'Insubria Facolta di Economia. Archived from the original (PDF) on 14 July 2014. Retrieved 9 February 2013.
  21. Lange, Oskar (1934). "The Determinateness of the Utility Function". Review of Economic Studies. 1 (3): 218–225. doi:10.2307/2967485. JSTOR   2967485.
  22. Kornienko, Tatiana (April 2013). Nature's Measuring Tape: A Cognitive Basis for Cardinal Utility (PDF) (Thesis). University of Edinburgh. p. 3.
  23. Kahneman, Daniel; Wakker, Peter; Sarin, Rakesh (1997). "Back to Bentham? Explorations of Experienced Utility?" (PDF). Quarterly Journal of Economics. 112 (2): 375–405. doi:10.1162/003355397555235.
  24. Kahneman, Daniel; Diener, Ed; Schwarz, Norbert, eds. (1999). Well-Being: Foundations of Hedonic Psychology. New York: Rusell Sage Foundation. ISBN   978-1-6104-4325-8.
  25. Bernadelli, H. (May 1938). "The End of the Marginal Utility Theory?". Economica. 5 (18): 196. doi:10.2307/2549021. JSTOR   2549021.
  26. Ellsberg, Daniel (1954). "Classic and Current Notions of 'Measurable Utility'". Economic Journal. 64 (255): 528–556. doi:10.2307/2227744. JSTOR   2227744.
  27. Strotz, Robert (1953). "Cardinal Utility". American Economic Review. 43 (2): 384–397.
  28. 1 2 Alchian, Armen A. (March 1953). "The Meaning of Utility Measurement" (PDF). American Economic Review. 43 (1): 26–50. JSTOR   1810289. Archived from the original (PDF) on 2012-03-21. Retrieved 2010-03-21.
  29. Baumol, William (December 1958). "The Cardinal Utility Which is Ordinal". Economic Journal. 68 (272): 665–672. doi:10.2307/2227278. JSTOR   2227278.
  30. 1 2 Chipman, John (April 1960). "The Foundations of Utility". Econometrica. 28 (2): 215–216. doi:10.2307/1907717. JSTOR   1907717.
  31. Allen, Roy (February 1935). "A Note on the Determinateness of the Utility Function". Review of Economic Studies. 2 (2): 155–158. doi:10.2307/2967563. JSTOR   2967563.
  32. Suppes, Patrick; Winet, Muriel (April 1955). "An Axiomatization of Utility Based on the Notion of Utility Differences". Management Science. 1 (3/4): 259–270. doi:10.1287/mnsc.1.3-4.259. JSTOR   2627164. Archived from the original on 2010-07-21. Retrieved 2010-06-10.
  33. Gilboa, Itzhak (2009). Theory of Decision under Uncertainty (PDF). Cambridge University Press. ISBN   978-1-1077-8251-8. Archived from the original (PDF) on 2018-02-19. Retrieved 2010-03-30.
  34. Poundstone, William (2010). Priceless: The Myth of Fair Value (and How to Take Advantage of It). New York: Hill and Wang. p. 39. ISBN   978-1-4299-4393-2.
  35. Viner, Jacob (December 1925). "The Utility Concept in Value Theory and Its Critics II". Journal of Political Economy. 33 (6): 638–659. doi:10.1086/253725. JSTOR   1822261. S2CID   222430888.
  36. Blackorby, Charles; Bossert, Walter; Donaldson, David (2002). Arrow, Kenneth; Sen, Amartya; Suzumura, Kotaru (eds.). Utilitarianism and the Theory of Justice. Elsevier. p. 552. ISBN   978-0-444-82914-6.{{cite book}}: |work= ignored (help)
  37. Shoemaker, Paul (June 1982). "The Expected Utility Model: Its Variants, Purposes, Evidence and Limitations". Journal of Economic Literature. 20 (2): 529–563. JSTOR   2724488.
  38. Majumdar, Tapas (February 1958). "Behaviourist Cardinalism in Utility Theory". Economica. 25 (97): 26–33. doi:10.2307/2550691. JSTOR   2550691.
  39. Moscati (2012), p. 20.
  40. Lancaster, Kelvin (April 1966). "A New Approach to Consumer Theory" (PDF). Journal of Political Economy. 74 (2): 132–157. doi:10.1086/259131. JSTOR   1828835. S2CID   222425622.