Indifference curve

Last updated
An example of an indifference map with three indifference curves represented Simple-indifference-curves.svg
An example of an indifference map with three indifference curves represented

In economics, an indifference curve connects points on a graph representing different quantities of two goods, points between which a consumer is indifferent. That is, any combinations of two products indicated by the curve will provide the consumer with equal levels of utility, and the consumer has no preference for one combination or bundle of goods over a different combination on the same curve. One can also refer to each point on the indifference curve as rendering the same level of utility (satisfaction) for the consumer. In other words, an indifference curve is the locus of various points showing different combinations of two goods providing equal utility to the consumer. Utility is then a device to represent preferences rather than something from which preferences come. [1] The main use of indifference curves is in the representation of potentially observable demand patterns for individual consumers over commodity bundles. [2]

Contents

There are infinitely many indifference curves: one passes through each combination. A collection of (selected) indifference curves, illustrated graphically, is referred to as an indifference map. The slope of an indifference curve is called the MRS (marginal rate of substitution), and it indicates how much of good y must be sacrificed to keep the utility constant if good x is increased by one unit. Given a utility function u(x,y), to calculate the MRS, we simply take the partial derivative of the function u with respect to good x and divide it by the partial derivative of the function u with respect to good y. If the marginal rate of substitution is diminishing along an indifference curve, that is the magnitude of the slope is decreasing or becoming less steep, then the preference is convex.

History

The theory of indifference curves was developed by Francis Ysidro Edgeworth, who explained in his 1881 book the mathematics needed for their drawing; [3] later on, Vilfredo Pareto was the first author to actually draw these curves, in his 1906 book. [4] [5] The theory can be derived from William Stanley Jevons' ordinal utility theory, which posits that individuals can always rank any consumption bundles by order of preference. [6]

Map and properties

An example of how indifference curves are obtained as the level curves of a utility function Indifference curve example.png
An example of how indifference curves are obtained as the level curves of a utility function

A graph of indifference curves for several utility levels of an individual consumer is called an indifference map. Points yielding different utility levels are each associated with distinct indifference curves and these indifference curves on the indifference map are like contour lines on a topographical graph. Each point on the curve represents the same elevation. If you move "off" an indifference curve traveling in a northeast direction (assuming positive marginal utility for the goods) you are essentially climbing a mound of utility. The higher you go the greater the level of utility. The non-satiation requirement means that you will never reach the "top," or a "bliss point," a consumption bundle that is preferred to all others.

Indifference curves are typically[ vague ] represented[ clarification needed ] to be:

  1. Defined only in the non-negative quadrant of commodity quantities (i.e. the possibility of having negative quantities of any good is ignored).
  2. Negatively sloped. That is, as quantity consumed of one good (X) increases, total satisfaction would increase[ clarification needed ] if not offset by a decrease in the quantity consumed of the other good (Y). Equivalently, satiation, such that more of either good (or both) is equally preferred to no increase, is excluded.[ clarification needed ] (If utility U = f(x, y), U, in the third dimension, does not have a local maximum for any x and y values.)[ clarification needed ] The negative slope of the indifference curve reflects the assumption of the monotonicity of consumer's preferences, which generates monotonically increasing utility functions, and the assumption of non-satiation (marginal utility for all goods is always positive); an upward sloping indifference curve would imply that a consumer is indifferent between a bundle A and another bundle B because they lie on the same indifference curve, even in the case in which the quantity of both goods in bundle B is higher. Because of monotonicity of preferences and non-satiation, a bundle with more of both goods must be preferred to one with less of both, thus the first bundle must yield a higher utility, and lie on a different indifference curve at a higher utility level. The negative slope of the indifference curve implies that the marginal rate of substitution is always positive;
  3. Complete, such that all points on an indifference curve are ranked equally preferred and ranked either more or less preferred than every other point not on the curve. So, with (2), no two curves can intersect (otherwise non-satiation would be violated since the point(s) of intersection would have equal utility).
  4. Transitive with respect to points on distinct indifference curves. That is, if each point on I2 is (strictly) preferred to each point on I1, and each point on I3 is preferred to each point on I2, each point on I3 is preferred to each point on I1. A negative slope and transitivity exclude indifference curves crossing, since straight lines from the origin on both sides of where they crossed would give opposite and intransitive preference rankings.
  5. (Strictly) convex. With (2), convex preferences [ clarification needed ] imply that the indifference curves cannot be concave to the origin, i.e. they will either be straight lines or bulge toward the origin of the indifference curve. If the latter is the case, then as a consumer decreases consumption of one good in successive units, successively larger doses of the other good are required to keep satisfaction unchanged.

Assumptions of consumer preference theory

Assume that there are two consumption bundles A and B each containing two commodities x and y. A consumer can unambiguously determine that one and only one of the following is the case:
  • A is preferred to B, formally written as ApB [7]
  • B is preferred to A, formally written as BpA [7]
  • A is indifferent to B, formally written as AIB [7]
This axiom precludes the possibility that the consumer cannot decide, [8] It assumes that a consumer is able to make this comparison with respect to every conceivable bundle of goods. [7]
This means that if A and B are identical in all respects the consumer will recognize this fact and be indifferent in comparing A and B
  • A = BAIB [7]
  • If ApB and BpC, then ApC. [7]
  • Also if AIB and BIC, then AIC. [7]
This is a consistency assumption.
  • If A is preferred to B and C is sufficiently close to B then A is preferred to C.
  • ApB and CBApC.
"Continuous" means infinitely divisible - just like there are infinitely many numbers between 1 and 2 all bundles are infinitely divisible. This assumption makes indifference curves continuous.
  • If A has more of both x and y than B, then A is preferred to B.
This assumption is commonly called the "more is better" assumption.
An alternative version of this assumption requires that if A and B have the same quantity of one good, but A has more of the other, then A is preferred to B.

It also implies that the commodities are good rather than bad. Examples of bad commodities can be disease, pollution etc. because we always desire less of such things.

  • The marginal rate of substitution tells how much 'y' a person is willing to sacrifice to get one more unit of 'x'.[ clarification needed ]
  • This assumption assures that indifference curves are smooth and convex to the origin.
  • This assumption also set the stage for using techniques of constrained optimization because the shape of the curve assures that the first derivative is negative and the second is positive.
  • Another name for this assumption is the substitution assumption. It is the most critical assumption of consumer theory: Consumers are willing to give up or trade-off some of one good to get more of another. The fundamental assertion is that there is a maximum amount that "a consumer will give up, of one commodity, to get one unit of another good, in that amount which will leave the consumer indifferent between the new and old situations" [9] The negative slope of the indifference curves represents the willingness of the consumer to make a trade off. [9]

Application

To maximise utility, a household should consume at (Qx, Qy). Assuming it does, a full demand schedule can be deduced as the price of one good fluctuates. Indifference curves showing budget line.svg
To maximise utility, a household should consume at (Qx, Qy). Assuming it does, a full demand schedule can be deduced as the price of one good fluctuates.

Consumer theory uses indifference curves and budget constraints to generate consumer demand curves. For a single consumer, this is a relatively simple process. First, let one good be an example market e.g., carrots, and let the other be a composite of all other goods. Budget constraints give a straight line on the indifference map showing all the possible distributions between the two goods; the point of maximum utility is then the point at which an indifference curve is tangent to the budget line (illustrated). This follows from common sense: if the market values a good more than the household, the household will sell it; if the market values a good less than the household, the household will buy it. The process then continues until the market's and household's marginal rates of substitution are equal. [10] Now, if the price of carrots were to change, and the price of all other goods were to remain constant, the gradient of the budget line would also change, leading to a different point of tangency and a different quantity demanded. These price / quantity combinations can then be used to deduce a full demand curve. [10] A line connecting all points of tangency between the indifference curve and the budget constraint is called the expansion path. [11]

Examples of indifference curves

In Figure 1, the consumer would rather be on I3 than I2, and would rather be on I2 than I1, but does not care where he/she is on a given indifference curve. The slope of an indifference curve (in absolute value), known by economists as the marginal rate of substitution, shows the rate at which consumers are willing to give up one good in exchange for more of the other good. For most goods the marginal rate of substitution is not constant so their indifference curves are curved. The curves are convex to the origin, describing the negative substitution effect. As price rises for a fixed money income, the consumer seeks the less expensive substitute at a lower indifference curve. The substitution effect is reinforced through the income effect of lower real income (Beattie-LaFrance). An example of a utility function that generates indifference curves of this kind is the Cobb–Douglas function . The negative slope of the indifference curve incorporates the willingness of the consumer to make trade offs. [9]

If two goods are perfect substitutes then the indifference curves will have a constant slope since the consumer would be willing to switch between at a fixed ratio. The marginal rate of substitution between perfect substitutes is likewise constant. An example of a utility function that is associated with indifference curves like these would be .

If two goods are perfect complements then the indifference curves will be L-shaped. Examples of perfect complements include left shoes compared to right shoes: the consumer is no better off having several right shoes if she has only one left shoe - additional right shoes have zero marginal utility without more left shoes, so bundles of goods differing only in the number of right shoes they include - however many - are equally preferred. The marginal rate of substitution is either zero or infinite. An example of the type of utility function that has an indifference map like that above is the Leontief function: .

The different shapes of the curves imply different responses to a change in price as shown from demand analysis in consumer theory. The results will only be stated here. A price-budget-line change that kept a consumer in equilibrium on the same indifference curve:

in Fig. 1 would reduce quantity demanded of a good smoothly as price rose relatively for that good.
in Fig. 2 would have either no effect on quantity demanded of either good (at one end of the budget constraint) or would change quantity demanded from one end of the budget constraint to the other.
in Fig. 3 would have no effect on equilibrium quantities demanded, since the budget line would rotate around the corner of the indifference curve. [nb 2]

Preference relations and utility

Choice theory formally represents consumers by a preference relation, and use this representation to derive indifference curves showing combinations of equal preference to the consumer.

Preference relations

Let

be a set of mutually exclusive alternatives among which a consumer can choose.
and be generic elements of .

In the language of the example above, the set is made of combinations of apples and bananas. The symbol is one such combination, such as 1 apple and 4 bananas and is another combination such as 2 apples and 2 bananas.

A preference relation, denoted , is a binary relation define on the set .

The statement

is described as ' is weakly preferred to .' That is, is at least as good as (in preference satisfaction).

The statement

is described as ' is weakly preferred to , and is weakly preferred to .' That is, one is indifferent to the choice of or , meaning not that they are unwanted but that they are equally good in satisfying preferences.

The statement

is described as ' is weakly preferred to , but is not weakly preferred to .' One says that ' is strictly preferred to .'

The preference relation is complete if all pairs can be ranked. The relation is a transitive relation if whenever and then .

For any element , the corresponding indifference curve, is made up of all elements of which are indifferent to . Formally,

.

In the example above, an element of the set is made of two numbers: The number of apples, call it and the number of bananas, call it

In utility theory, the utility function of an agent is a function that ranks all pairs of consumption bundles by order of preference (completeness) such that any set of three or more bundles forms a transitive relation. This means that for each bundle there is a unique relation, , representing the utility (satisfaction) relation associated with . The relation is called the utility function. The range of the function is a set of real numbers. The actual values of the function have no importance. Only the ranking of those values has content for the theory. More precisely, if , then the bundle is described as at least as good as the bundle . If , the bundle is described as strictly preferred to the bundle .

Consider a particular bundle and take the total derivative of about this point:

or, without loss of generality,

(Eq. 1)

where is the partial derivative of with respect to its first argument, evaluated at . (Likewise for )

The indifference curve through must deliver at each bundle on the curve the same utility level as bundle . That is, when preferences are represented by a utility function, the indifference curves are the level curves of the utility function. Therefore, if one is to change the quantity of by , without moving off the indifference curve, one must also change the quantity of by an amount such that, in the end, there is no change in U:

, or, substituting 0 into (Eq. 1) above to solve for dy/dx:
.

Thus, the ratio of marginal utilities gives the absolute value of the slope of the indifference curve at point . This ratio is called the marginal rate of substitution between and .

Examples

Linear utility

If the utility function is of the form then the marginal utility of is and the marginal utility of is . The slope of the indifference curve is, therefore,

Observe that the slope does not depend on or : the indifference curves are straight lines.

Cobb–Douglas utility

A class of utility functions known as Cobb-Douglas utility functions are very commonly used in economics for two reasons:

1. They represent ‘well-behaved’ preferences, such as more is better and preference for variety.

2. They are very flexible and can be adjusted to fit real-world data very easily. If the utility function is of the form the marginal utility of is and the marginal utility of is .Where . The slope of the indifference curve, and therefore the negative of the marginal rate of substitution, is then

CES utility

A general CES (Constant Elasticity of Substitution) form is

where and . (The Cobb–Douglas is a special case of the CES utility, with .) The marginal utilities are given by

and

Therefore, along an indifference curve,

These examples might be useful for modelling individual or aggregate demand.

Biology

As used in biology, the indifference curve is a model for how animals 'decide' whether to perform a particular behavior, based on changes in two variables which can increase in intensity, one along the x-axis and the other along the y-axis. For example, the x-axis may measure the quantity of food available while the y-axis measures the risk involved in obtaining it. The indifference curve is drawn to predict the animal's behavior at various levels of risk and food availability.

Criticisms

Indifference curves inherit the criticisms directed at utility more generally.

Herbert Hovenkamp (1991) [13] has argued that the presence of an endowment effect has significant implications for law and economics, particularly in regard to welfare economics. He argues that the presence of an endowment effect indicates that a person has no indifference curve (see however Hanemann, 1991 [14] ) rendering the neoclassical tools of welfare analysis useless, concluding that courts should instead use WTA as a measure of value. Fischel (1995) [15] however, raises the counterpoint that using WTA as a measure of value would deter the development of a nation's infrastructure and economic growth.

Austrian economist Murray Rothbard criticised the indifference curve as "never by definition exhibited in action, in actual exchanges, and is therefore unknowable and objectively meaningless." [16]

See also

Notes

  1. The transitivity of weak preferences is sufficient for most indifference-curve analyses: If A is weakly preferred to B, meaning that the consumer likes Aat least as much as B, and B is weakly preferred to C, then A is weakly preferred to C. [8]
  2. Indifference curves can be used to derive the individual demand curve. However, the assumptions of consumer preference theory do not guarantee that the demand curve will have a negative slope. [12]

Related Research Articles

<span class="mw-page-title-main">Centripetal force</span> Force directed to the center of rotation

A centripetal force is a force that makes a body follow a curved path. The direction of the centripetal force is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path. Isaac Newton described it as "a force by which bodies are drawn or impelled, or in any way tend, towards a point as to a centre". In the theory of Newtonian mechanics, gravity provides the centripetal force causing astronomical orbits.

In economics, utility is a measure of the satisfaction that a certain person has from a certain state of the world. Over time, the term has been used in two different meanings.

In the mathematical field of differential geometry, the Riemann curvature tensor or Riemann–Christoffel tensor is the most common way used to express the curvature of Riemannian manifolds. It assigns a tensor to each point of a Riemannian manifold. It is a local invariant of Riemannian metrics which measures the failure of the second covariant derivatives to commute. A Riemannian manifold has zero curvature if and only if it is flat, i.e. locally isometric to the Euclidean space. The curvature tensor can also be defined for any pseudo-Riemannian manifold, or indeed any manifold equipped with an affine connection.

The theory of consumer choice is the branch of microeconomics that relates preferences to consumption expenditures and to consumer demand curves. It analyzes how consumers maximize the desirability of their consumption, by maximizing utility subject to a consumer budget constraint. Factors influencing consumers' evaluation of the utility of goods include: income level, cultural factors, product information and physio-psychological factors.

In the calculus of variations, a field of mathematical analysis, the functional derivative relates a change in a functional to a change in a function on which the functional depends.

<span class="mw-page-title-main">Cobb–Douglas production function</span> Macroeconomic formula that describes productivity

In economics and econometrics, the Cobb–Douglas production function is a particular functional form of the production function, widely used to represent the technological relationship between the amounts of two or more inputs and the amount of output that can be produced by those inputs. The Cobb–Douglas form was developed and tested against statistical evidence by Charles Cobb and Paul Douglas between 1927 and 1947; according to Douglas, the functional form itself was developed earlier by Philip Wicksteed.

<span class="mw-page-title-main">Substitute good</span> Economics concept of goods considered interchangeable

In microeconomics, two goods are substitutes if the products could be used for the same purpose by the consumers. That is, a consumer perceives both goods as similar or comparable, so that having more of one good causes the consumer to desire less of the other good. Contrary to complementary goods and independent goods, substitute goods may replace each other in use due to changing economic conditions. An example of substitute goods is Coca-Cola and Pepsi; the interchangeable aspect of these goods is due to the similarity of the purpose they serve, i.e fulfilling customers' desire for a soft drink. These types of substitutes can be referred to as close substitutes.

In economics, the marginal rate of substitution (MRS) is the rate at which a consumer can give up some amount of one good in exchange for another good while maintaining the same level of utility. At equilibrium consumption levels, marginal rates of substitution are identical. The marginal rate of substitution is one of the three factors from marginal productivity, the others being marginal rates of transformation and marginal productivity of a factor.

In differential topology, the jet bundle is a certain construction that makes a new smooth fiber bundle out of a given smooth fiber bundle. It makes it possible to write differential equations on sections of a fiber bundle in an invariant form. Jets may also be seen as the coordinate free versions of Taylor expansions.

Utility maximization was first developed by utilitarian philosophers Jeremy Bentham and John Stuart Mill. In microeconomics, the utility maximization problem is the problem consumers face: "How should I spend my money in order to maximize my utility?" It is a type of optimal decision problem. It consists of choosing how much of each available good or service to consume, taking into account a constraint on total spending (income), the prices of the goods and their preferences.

In microeconomics, a consumer's Marshallian demand function is the quantity they demand of a particular good as a function of its price, their income, and the prices of other goods, a more technical exposition of the standard demand function. It is a solution to the utility maximization problem of how the consumer can maximize their utility for given income and prices. A synonymous term is uncompensated demand function, because when the price rises the consumer is not compensated with higher nominal income for the fall in their real income, unlike in the Hicksian demand function. Thus the change in quantity demanded is a combination of a substitution effect and a wealth effect. Although Marshallian demand is in the context of partial equilibrium theory, it is sometimes called Walrasian demand as used in general equilibrium theory.

In economics, an ordinal utility function is a function representing the preferences of an agent on an ordinal scale. Ordinal utility theory claims that it is only meaningful to ask which option is better than the other, but it is meaningless to ask how much better it is or how good it is. All of the theory of consumer decision-making under conditions of certainty can be, and typically is, expressed in terms of ordinal utility.

When studying and formulating Albert Einstein's theory of general relativity, various mathematical structures and techniques are utilized. The main tools used in this geometrical theory of gravitation are tensor fields defined on a Lorentzian manifold representing spacetime. This article is a general description of the mathematics of general relativity.

Constant elasticity of substitution (CES), in economics, is a property of some production functions and utility functions. Several economists have featured in the topic and have contributed in the final finding of the constant. They include Tom McKenzie, John Hicks and Joan Robinson. The vital economic element of the measure is that it provided the producer a clear picture of how to move between different modes or types of production.

<span class="mw-page-title-main">Mathematical descriptions of the electromagnetic field</span> Formulations of electromagnetism

There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking.

Competitive equilibrium is a concept of economic equilibrium, introduced by Kenneth Arrow and Gérard Debreu in 1951, appropriate for the analysis of commodity markets with flexible prices and many traders, and serving as the benchmark of efficiency in economic analysis. It relies crucially on the assumption of a competitive environment where each trader decides upon a quantity that is so small compared to the total quantity traded in the market that their individual transactions have no influence on the prices. Competitive markets are an ideal standard by which other market structures are evaluated.

A ratio distribution is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution.

In economics and consumer theory, quasilinear utility functions are linear in one argument, generally the numeraire. Quasilinear preferences can be represented by the utility function where is strictly concave. A useful property of the quasilinear utility function is that the Marshallian/Walrasian demand for does not depend on wealth and is thus not subject to a wealth effect; The absence of a wealth effect simplifies analysis and makes quasilinear utility functions a common choice for modelling. Furthermore, when utility is quasilinear, compensating variation (CV), equivalent variation (EV), and consumer surplus are algebraically equivalent. In mechanism design, quasilinear utility ensures that agents can compensate each other with side payments.

In economics, and in other social sciences, preference refers to an order by which an agent, while in search of an "optimal choice", ranks alternatives based on their respective utility. Preferences are evaluations that concern matters of value, in relation to practical reasoning. Individual preferences are determined by taste, need, ..., as opposed to price, availability or personal income. Classical economics assumes that people act in their best (rational) interest. In this context, rationality would dictate that, when given a choice, an individual will select an option that maximizes their self-interest. But preferences are not always transitive, both because real humans are far from always being rational and because in some situations preferences can form cycles, in which case there exists no well-defined optimal choice. An example of this is Efron dice.

In fluid dynamics, a flow with periodic variations is known as pulsatile flow, or as Womersley flow. The flow profiles was first derived by John R. Womersley (1907–1958) in his work with blood flow in arteries. The cardiovascular system of chordate animals is a very good example where pulsatile flow is found, but pulsatile flow is also observed in engines and hydraulic systems, as a result of rotating mechanisms pumping the fluid.

References

  1. Geanakoplos, John (1987). "Arrow-Debreu model of general equilibrium". The New Palgrave: A Dictionary of Economics. Vol. 1. pp. 116–124 [p. 117].
  2. Böhm, Volker; Haller, Hans (1987). "Demand theory". The New Palgrave: A Dictionary of Economics . Vol. 1. pp. 785–792 [p. 785].
  3. Francis Ysidro Edgeworth (1881). Mathematical Psychics: An Essay on the Application of Mathematics to the Moral Sciences. London: C. Kegan Paul and Co.
  4. Vilfredo Pareto (1919). Manuale di Economia Politica con una Introduzione alla Scienza Sociale [Manual of Political Economy]. Piccola Biblioteca Scientifica. Vol. 13. Milano: Societa Editrice Libraria.
  5. "Indifference curves | Policonomics" . Retrieved 2018-12-08.
  6. "William Stanley Jevons - Policonomics". www.policonomics.com. Retrieved 23 March 2018.
  7. 1 2 3 4 5 6 7 Binger; Hoffman (1998). Microeconomics with Calculus (2nd ed.). Reading: Addison-Wesley. pp. 109–117. ISBN   0-321-01225-9.
  8. 1 2 Perloff, Jeffrey M. (2008). Microeconomics: Theory & Applications with Calculus. Boston: Addison-Wesley. p. 62. ISBN   978-0-321-27794-7.
  9. 1 2 3 Silberberg; Suen (2000). The Structure of Economics: A Mathematical Analysis (3rd ed.). Boston: McGraw-Hill. ISBN   0-07-118136-9.
  10. 1 2 Lipsey, Richard G. (1975). An Introduction to Positive Economics (Fourth ed.). Weidenfeld & Nicolson. pp. 182–186. ISBN   0-297-76899-9.
  11. Salvatore, Dominick (1989). Schaum's Outline of Theory and Problems of Managerial Economics. McGraw-Hill. ISBN   0-07-054513-8.
  12. Binger; Hoffman (1998). Microeconomics with Calculus (2nd ed.). Reading: Addison-Wesley. pp. 141–143. ISBN   0-321-01225-9.
  13. Hovenkamp, Herbert (1991). "Legal Policy and the Endowment Effect". The Journal of Legal Studies. 20 (2): 225. doi:10.1086/467886. S2CID   155051169.
  14. Hanemann, W. Michael (1991). "Willingness To Pay and Willingness To Accept: How Much Can They Differ? Reply". American Economic Review. 81 (3): 635–647. doi:10.1257/000282803321455449. JSTOR   2006525.
  15. Fischel, William A. (1995). "The offer/ask disparity and just compensation for takings: A constitutional choice perspective". International Review of Law and Economics. 15 (2): 187–203. doi: 10.1016/0144-8188(94)00005-F .
  16. Rothbard, Murray (1998). The Ethics of Liberty. New York University Press. p. 242. ISBN   9780814775592.

Further reading