Quantum game theory

Last updated

Quantum game theory is an extension of classical game theory to the quantum domain. It differs from classical game theory in three primary ways:

Contents

  1. Superposed initial states,
  2. Quantum entanglement of initial states,
  3. Superposition of strategies to be used on the initial states.

This theory is based on the physics of information much like quantum computing.

History

[1] In 1999, a professor in the math department at the University of California at San Diego named David A. Meyer first published Quantum Strategies which details a quantum version of the classical game theory game, matching pennies. In the quantum version, players are allowed access to quantum signals through the phenomenon of quantum entanglement. [2]

Superposed initial states

The information transfer that occurs during a game can be viewed as a physical process. In the simplest case of a classical game between two players with two strategies each, both the players can use a bit (a '0' or a '1') to convey their choice of strategy. A popular example of such a game is the prisoners' dilemma, where each of the convicts can either cooperate or defect: withholding knowledge or revealing that the other committed the crime. In the quantum version of the game, the bit is replaced by the qubit, which is a quantum superposition of two or more base states. In the case of a two-strategy game this can be physically implemented by the use of an entity like the electron which has a superposed spin state, with the base states being +1/2 (plus half) and 1/2 (minus half). Each of the spin states can be used to represent each of the two strategies available to the players. When a measurement is made on the electron, it collapses to one of the base states, thus conveying the strategy used by the player.

Entangled initial states

The set of qubits which are initially provided to each of the players (to be used to convey their choice of strategy) may be entangled. For instance, an entangled pair of qubits implies that an operation performed on one of the qubits, affects the other qubit as well, thus altering the expected pay-offs of the game. A simple example of this is a quantum version [3] of the Two-up coin game in which the coins are entangled.

Superposition of strategies to be used on initial states

The job of a player in a game is to choose a strategy. In terms of bits this means that the player has to choose between 'flipping' the bit to its opposite state or leaving its current state untouched. When extended to the quantum domain this implies that the player can rotate the qubit to a new state, thus changing the probability amplitudes of each of the base states. Such operations on the qubits are required to be unitary transformations on the initial state of the qubit. This is different from the classical procedure which chooses the strategies with some statistical probabilities.

Multiplayer games

Introducing quantum information into multiplayer games allows a new type of "equilibrium strategy" which is not found in traditional games. The entanglement of players' choices can have the effect of a contract by preventing players from profiting from other player's betrayal. [4]

Quantum Prisoner's Dilemma

The Classical Prisoner's Dilemma is a game played between two players with a choice to cooperate with or betray their opponent. Classically, the dominant strategy is to always choose betrayal. When both players choose this strategy every turn, they each ensure a suboptimal profit, but cannot lose, and the game is said to have reached a Nash equilibrium. Profit would be maximized for both players if each chose to cooperate every turn, but this is not the rational choice, thus a suboptimal solution is the dominant outcome. In the Quantum Prisoner's Dilemma, both parties choosing to betray each other is still an equilibrium, however, there can also exist multiple Nash equilibriums that vary based on the entanglement of the initial states. In the case where the states are only slightly entangled, there exists a certain unitary operation for Alice so that if Bob chooses betrayal every turn, Alice will actually gain more profit than Bob and vice versa. Thus, a profitable equilibrium can be reached in 2 additional ways. The case where the initial state is most entangled shows the most change from the classical game. In this version of the game, Alice and Bob each have an operator Q that allows for a payout equal to mutual cooperation with no risk of betrayal. This is a Nash equilibrium that also happens to be Pareto optimal. [5]

Additionally, the quantum version of the Prisoner's Dilemma differs greatly from the classical version when the game is of unknown or infinite length. Classically, the infinite Prisoner's Dilemma has no defined fixed strategy but in the quantum version it is possible to develop an equilibrium strategy. [6]

Quantum Volunteer's Dilemma

The Volunteer's dilemma is a well-known game in game theory that models the conflict players face when deciding whether to volunteer for a collective benefit, knowing that volunteering incurs a personal cost. One significant volunteer’s dilemma variant was introduced by Weesie and Franzen in 1998 [7] , involves cost-sharing among volunteers. In this variant of the volunteer's dilemma, if there is no volunteer, all players receive a payoff of 0. If there is at least one volunteer, the reward of b units is distributed to all players. In contrast, the total cost of c units incurred by volunteering is divided equally among all the volunteers. It is shown that for classical mixed strategies setting, there is a unique symmetric Nash equilibrium and the Nash equilibrium is obtained by setting the probability of volunteering for each player to be the unique root in the open interval (0,1) of the degree-n polynomial given by


In 2024, a quantum variant of the classical volunteer’s dilemma is introduced with b=2 and c=1 is studied, generalizing the classical setting by allowing players to utilize quantum strategies [8] . This is achieved by employing the Eisert–Wilkens–Lewenstein quantization framework. In this setting, the players received an entangled n-qubit state with each player controlling one qubit. The decision of each player can be viewed as determining two angles. Symmetric Nash equilibria that attain a payoff value of for each player is shown and each player volunteers at this Nash Equilibrium. Furthermore, these Nash Equilibrium are Pareto optimal. It is shown that the payoff function of Nash equilibrium in the quantum setting is higher than the payoff of Nash equilibrium in the classical setting.

Quantum Chess

Quantum Chess was first developed by a graduate student at the University of Southern California named Chris Cantwell. His motivation to develop the game was to expose non-physicists to the world of quantum mechanics. [9]

The game uses the same pieces as classical chess (8 pawns, 2 knights, 2 bishops, 2 rooks, 1 queen, 1 king) and is won in the same manner (by capturing the opponent's king). However, the pieces are allowed to obey laws of quantum mechanics such as superposition. By allowed the introduction of superposition, it becomes possible for pieces to occupy more than one square in an instance. The movement rules for each piece are the same as classical chess.

The biggest difference between quantum chess and classical chess is the check rule. Check is not included in quantum chess because it is possible for the king, as well as all other pieces, to occupy multiple spots on the grid at once. Another difference is the concept of movement to occupied space. Superposition also allows two occupies to share space or move through each other.

Capturing an opponent's piece is also slightly different in quantum chess than in classical chess. Quantum chess uses quantum measurement as a method of capturing. When attempting to capture an opponent's piece, a measurement is made to determine the probability of whether or not the space is occupied and if the path is blocked. If the probability is favorable, a move can be made to capture. [10]

Quantum minimax theorems

The concepts of a quantum player, a zero-sum quantum game and the associated expected payoff were defined by A. Boukas in 1999 (for finite games) and in 2020 by L. Accardi and A. Boukas (for infinite games) within the framework of the spectral theorem for self-adjoint operators on Hilbert spaces. Quantum versions of Von Neumann's minimax theorem were proved. [11] [12]

See also

Related Research Articles

<span class="mw-page-title-main">Quantum teleportation</span> Physical phenomenon

Quantum teleportation is a technique for transferring quantum information from a sender at one location to a receiver some distance away. While teleportation is commonly portrayed in science fiction as a means to transfer physical objects from one location to the next, quantum teleportation only transfers quantum information. The sender does not have to know the particular quantum state being transferred. Moreover, the location of the recipient can be unknown, but to complete the quantum teleportation, classical information needs to be sent from sender to receiver. Because classical information needs to be sent, quantum teleportation cannot occur faster than the speed of light.

<span class="mw-page-title-main">Qubit</span> Basic unit of quantum information

In quantum computing, a qubit or quantum bit is a basic unit of quantum information—the quantum version of the classic binary bit physically realized with a two-state device. A qubit is a two-state quantum-mechanical system, one of the simplest quantum systems displaying the peculiarity of quantum mechanics. Examples include the spin of the electron in which the two levels can be taken as spin up and spin down; or the polarization of a single photon in which the two spin states can also be measured as horizontal and vertical linear polarization. In a classical system, a bit would have to be in one state or the other. However, quantum mechanics allows the qubit to be in a coherent superposition of multiple states simultaneously, a property that is fundamental to quantum mechanics and quantum computing.

<span class="mw-page-title-main">Quantum entanglement</span> Correlation between quantum systems

Quantum entanglement is the phenomenon of a group of particles being generated, interacting, or sharing spatial proximity in such a way that the quantum state of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance. The topic of quantum entanglement is at the heart of the disparity between classical and quantum physics: entanglement is a primary feature of quantum mechanics not present in classical mechanics.

Zero-sum game is a mathematical representation in game theory and economic theory of a situation that involves two competing entities, where the result is an advantage for one side and an equivalent loss for the other. In other words, player one's gain is equivalent to player two's loss, with the result that the net improvement in benefit of the game is zero.

The prisoner's dilemma is a game theory thought experiment that involves two rational agents, each of whom can cooperate for mutual benefit or betray their partner ("defect") for individual reward. This dilemma was originally framed by Merrill Flood and Melvin Dresher in 1950 while they worked at the RAND Corporation. Albert W. Tucker later formalized the game by structuring the rewards in terms of prison sentences and named it the "prisoner's dilemma".

In game theory, the Nash equilibrium is the most commonly-used solution concept for non-cooperative games. A Nash equilibrium is a situation where no player could gain by changing their own strategy. The idea of Nash equilibrium dates back to the time of Cournot, who in 1838 applied it to his model of competition in an oligopoly.

In game theory, the centipede game, first introduced by Robert Rosenthal in 1981, is an extensive form game in which two players take turns choosing either to take a slightly larger share of an increasing pot, or to pass the pot to the other player. The payoffs are arranged so that if one passes the pot to one's opponent and the opponent takes the pot on the next round, one receives slightly less than if one had taken the pot on this round, but after an additional switch the potential payoff will be higher. Therefore, although at each round a player has an incentive to take the pot, it would be better for them to wait. Although the traditional centipede game had a limit of 100 rounds, any game with this structure but a different number of rounds is called a centipede game.

Matching pennies is a non-cooperative game studied in game theory. It is played between two players, Even and Odd. Each player has a penny and must secretly turn the penny to heads or tails. The players then reveal their choices simultaneously. If the pennies match, then Even wins and keeps both pennies. If the pennies do not match, then Odd wins and keeps both pennies.

<span class="mw-page-title-main">El Farol Bar problem</span>

The El Farol bar problem is a problem in game theory. Every Thursday night, a fixed population want to go have fun at the El Farol Bar, unless it's too crowded.

In game theory, the outcome of a game is the ultimate result of a strategic interaction with one or more people, dependant on the choices made by all participants in a certain exchange. It represents the final payoff resulting from a set of actions that individuals can take within the context of the game. Outcomes are pivotal in determining the payoffs and expected utility for parties involved. Game theorists commonly study how the outcome of a game is determined and what factors affect it.

<span class="mw-page-title-main">Greenberger–Horne–Zeilinger state</span> "Highly entangled" quantum state of 3 or more qubits

In physics, in the area of quantum information theory, a Greenberger–Horne–Zeilinger state is a certain type of entangled quantum state that involves at least three subsystems. The four-particle version was first studied by Daniel Greenberger, Michael Horne and Anton Zeilinger in 1989, and the three-particle version was introduced by N. David Mermin in 1990. Extremely non-classical properties of the state have been observed, contradicting intuitive notions of locality and causality. GHZ states for large numbers of qubits are theorized to give enhanced performance for metrology compared to other qubit superposition states.

The W state is an entangled quantum state of three qubits which in the bra-ket notation has the following shape

In quantum computing, the Gottesman–Knill theorem is a theoretical result by Daniel Gottesman and Emanuel Knill that states that stabilizer circuits, circuits that only consist of gates from the normalizer of the qubit Pauli group, also called Clifford group, can be perfectly simulated in polynomial time on a probabilistic classical computer. The Clifford group can be generated solely by using CNOT, Hadamard, and phase gate S; and therefore stabilizer circuits can be constructed using only these gates.

In game theory, the traveler's dilemma is a non-zero-sum game in which each player proposes a payoff. The lower of the two proposals wins; the lowball player receives the lowball payoff plus a small bonus, and the highball player receives the same lowball payoff, minus a small penalty. Surprisingly, the Nash equilibrium is for both players to aggressively lowball. The traveler's dilemma is notable in that naive play appears to outperform the Nash equilibrium; this apparent paradox also appears in the centipede game and the finitely-iterated prisoner's dilemma.

<span class="mw-page-title-main">One-way quantum computer</span> Method of quantum computing

The one-way quantum computer, also known as measurement-based quantum computer (MBQC), is a method of quantum computing that first prepares an entangled resource state, usually a cluster state or graph state, then performs single qubit measurements on it. It is "one-way" because the resource state is destroyed by the measurements.

Quantum pseudo-telepathy describes the use of quantum entanglement to eliminate the need for classical communications. A nonlocal game is said to display quantum pseudo-telepathy if players who can use entanglement can win it with certainty while players without it can not. The prefix pseudo refers to the fact that quantum pseudo-telepathy does not involve the exchange of information between any parties. Instead, quantum pseudo-telepathy removes the need for parties to exchange information in some circumstances.

<span class="mw-page-title-main">Simultaneous game</span>

In game theory, a simultaneous game or static game is a game where each player chooses their action without knowledge of the actions chosen by other players. Simultaneous games contrast with sequential games, which are played by the players taking turns. In other words, both players normally act at the same time in a simultaneous game. Even if the players do not act at the same time, both players are uninformed of each other's move while making their decisions. Normal form representations are usually used for simultaneous games. Given a continuous game, players will have different information sets if the game is simultaneous than if it is sequential because they have less information to act on at each step in the game. For example, in a two player continuous game that is sequential, the second player can act in response to the action taken by the first player. However, this is not possible in a simultaneous game where both players act at the same time.

In quantum mechanics, the cat state, named after Schrödinger's cat, refers to a quantum state composed of a superposition of two other states of flagrantly contradictory aspects. Generalizing Schrödinger's thought experiment, any other quantum superposition of two macroscopically distinct states is also referred to as a cat state. A cat state could be of one or more modes or particles, therefore it is not necessarily an entangled state. Such cat states have been experimentally realized in various ways and at various scales.

<span class="mw-page-title-main">Quantum complex network</span> Notion in network science of quantum information networks

Quantum complex networks are complex networks whose nodes are quantum computing devices. Quantum mechanics has been used to create secure quantum communications channels that are protected from hacking. Quantum communications offer the potential for secure enterprise-scale solutions.

The Berge equilibrium is a game theory solution concept named after the mathematician Claude Berge. It is similar to the standard Nash equilibrium, except that it aims to capture a type of altruism rather than purely non-cooperative play. Whereas a Nash equilibrium is a situation in which each player of a strategic game ensures that they personally will receive the highest payoff given other players' strategies, in a Berge equilibrium every player ensures that all other players will receive the highest payoff possible. Although Berge introduced the intuition for this equilibrium notion in 1957, it was only formally defined by Vladislav Iosifovich Zhukovskii in 1985, and it was not in widespread use until half a century after Berge originally developed it.

References

  1. Meyer, David A. (1999-02-01). "Quantum strategies". Physical Review Letters. 82 (5): 1052–1055. arXiv: quant-ph/9804010 . Bibcode:1999PhRvL..82.1052M. doi:10.1103/PhysRevLett.82.1052. ISSN   0031-9007. S2CID   7361611.
  2. Brandenburger, Adam (2010-05-01). "The relationship between quantum and classical correlation in games". Games and Economic Behavior. Special Issue In Honor of Robert Aumann. 69 (1): 175–183. doi:10.1016/j.geb.2009.10.009. ISSN   0899-8256.
  3. https://play.google.com/store/apps/details?id=com.QuantumGamesLLC.QuantumTwoUp [ bare URL ]
  4. Simon C. Benjamin; Patrick M. Hayden (13 August 2001), "Multiplayer quantum games", Physical Review A , 64 (3): 030301, arXiv: quant-ph/0007038 , Bibcode:2001PhRvA..64c0301B, doi:10.1103/PhysRevA.64.030301, S2CID   32056578
  5. Du, Jiangfeng; Xu, Xiaodong; Li, Hui; Zhou, Xianyi; Han, Rongdian (2003). "Playing Prisoner's Dilemma with Quantum Rules". arXiv: quant-ph/0301042 .
  6. Ikeda, Kazuki; Aoki, Shoto (2021-11-17). "Infinitely repeated quantum games and strategic efficiency". Quantum Information Processing. 20 (12): 387. arXiv: 2005.05588 . Bibcode:2021QuIP...20..387I. doi:10.1007/s11128-021-03295-7. ISSN   1573-1332. S2CID   244354791.
  7. Weesie, Jeroen, and Axel Franzen. "Cost sharing in a volunteer's dilemma." Journal of conflict resolution 42.5 (1998): 600-618.
  8. Koh, Enshan Dax; Kumar, Kaavya; Goh, Siong Thye (2024). "Quantum Volunteer's Dilemma". arXiv: 2409.05708 [quant-ph].
  9. Cantwell, Christopher (2019-07-10). "Quantum Chess: Developing a Mathematical Framework and Design Methodology for Creating Quantum Games". arXiv: 1906.05836 [quant-ph].
  10. "Quantum Chess Rules". Quantum Realm Games. 2020.
  11. Boukas, A. (2000). "Quantum Formulation of Classical Two Person Zero-Sum Games". Open Systems & Information Dynamics. 7: 19–32. doi:10.1023/A:1009699300776. S2CID   116795672.
  12. Accardi, Luigi; Boukas, Andreas (2020). "Von Neumann's Minimax Theorem for Continuous Quantum Games". Journal of Stochastic Analysis. 1 (2). Article 5. arXiv: 2006.11502 . doi: 10.31390/josa.1.2.05 .

Further reading