Part of a series of articles about |
Quantum mechanics |
---|
Quantum pseudo-telepathy describes the use of quantum entanglement to eliminate the need for classical communications. [1] [2] A nonlocal game is said to display quantum pseudo-telepathy if players who can use entanglement can win it with certainty while players without it can not. The prefix pseudo refers to the fact that quantum pseudo-telepathy does not involve the exchange of information between any parties. Instead, quantum pseudo-telepathy removes the need for parties to exchange information in some circumstances.
Quantum pseudo-telepathy is generally used as a thought experiment to demonstrate the non-local characteristics of quantum mechanics. However, quantum pseudo-telepathy is a real-world phenomenon which can be verified experimentally. It is thus an especially striking example of an experimental confirmation of Bell inequality violations.
A simple magic square game demonstrating nonclassical correlations was introduced by P.K. Aravind [3] based on a series of papers by N. David Mermin [4] [5] and Asher Peres [6] and Adán Cabello [7] [8] that developed simplifying demonstrations of Bell's theorem. The game has been reformulated to demonstrate quantum pseudo-telepathy. [9]
This is a cooperative game featuring two players, Alice and Bob, and a referee. The referee asks Alice to fill in one row, and Bob one column, of a 3×3 table with plus and minus signs. Their answers must respect the following constraints: Alice's row must contain an even number of minus signs, Bob's column must contain an odd number of minus signs, and they both must assign the same sign to the cell where the row and column intersects. If they manage they win, otherwise they lose.
Alice and Bob are allowed to elaborate a strategy together, but crucially are not allowed to communicate after they know which row and column they will need to fill in (as otherwise the game would be trivial).
It is easy to see that if Alice and Bob can come up with a classical strategy where they always win, they can represent it as a 3×3 table encoding their answers. But this is not possible, as the number of minus signs in this hypothetical table would need to be even and odd at the same time: every row must contain an even number of minus signs, making the total number of minus signs even, and every column must contain an odd number of minus signs, making the total number of minus signs odd.
With a bit further analysis one can see that the best possible classical strategy can be represented by a table where each cell now contains both Alice and Bob's answers, that may differ. It is possible to make their answers equal in 8 out of 9 cells, while respecting the parity of Alice's rows and Bob's columns. This implies that if the referee asks for a row and column whose intersection is one of the cells where their answers match they win, and otherwise they lose. Under the usual assumption that the referee asks for them uniformly at random, the best classical winning probability is 8/9.
Use of quantum pseudo-telepathy would enable Alice and Bob to win the game 100% of the time without any communication once the game has begun.
This requires Alice and Bob to possess two pairs of particles with entangled states. These particles must have been prepared before the start of the game. One particle of each pair is held by Alice and the other by Bob, so they each have two particles. When Alice and Bob learn which column and row they must fill, each uses that information to select which measurements they should make to their particles. The result of the measurements will appear to each of them to be random (and the observed partial probability distribution of either particle will be independent of the measurement performed by the other party), so no real "communication" takes place.[ citation needed ]
However, the process of measuring the particles imposes sufficient structure on the joint probability distribution of the results of the measurement such that if Alice and Bob choose their actions based on the results of their measurement, then there will exist a set of strategies and measurements allowing the game to be won with probability 1.
Note that Alice and Bob could be light years apart from one another, and the entangled particles will still enable them to coordinate their actions sufficiently well to win the game with certainty.
Each round of this game uses up one entangled state. Playing N rounds requires that N entangled states (2N independent Bell pairs, see below) be shared in advance. This is because each round needs 2-bits of information to be measured (the third entry is determined by the first two, so measuring it isn't necessary), which destroys the entanglement. There is no way to reuse old measurements from earlier games.
The trick is for Alice and Bob to share an entangled quantum state and to use specific measurements on their components of the entangled state to derive the table entries. A suitable correlated state consists of a pair of entangled Bell states:
here and are eigenstates of the Pauli operator Sx with eigenvalues +1 and −1, respectively, whilst the subscripts a, b, c, and d identify the components of each Bell state, with a and c going to Alice, and b and d going to Bob. The symbol represents a tensor product.
Observables for these components can be written as products of the Pauli matrices:
Products of these Pauli spin operators can be used to fill the 3×3 table such that each row and each column contains a mutually commuting set of observables with eigenvalues +1 and −1, and with the product of the observables in each row being the identity operator, and the product of observables in each column equating to minus the identity operator. This is a so-called Mermin–Peres magic square. It is shown in below table.
Effectively, while it is not possible to construct a 3×3 table with entries +1 and −1 such that the product of the elements in each row equals +1 and the product of elements in each column equals −1, it is possible to do so with the richer algebraic structure based on spin matrices.
The play proceeds by having each player make one measurement on their part of the entangled state per round of play. Each of Alice's measurements will give her the values for a row, and each of Bob's measurements will give him the values for a column. It is possible to do that because all observables in a given row or column commute, so there exists a basis in which they can be measured simultaneously. For Alice's first row she needs to measure both her particles in the basis, for the second row she needs to measure them in the basis, and for the third row she needs to measure them in an entangled basis. For Bob's first column he needs to measure his first particle in the basis and the second in the basis, for second column he needs to measure his first particle in the basis and the second in the basis, and for his third column he needs to measure both his particles in a different entangled basis, the Bell basis. As long as the table above is used, the measurement results are guaranteed to always multiply out to +1 for Alice along her row, and −1 for Bob down his column. Of course, each completely new round requires a new entangled state, as different rows and columns are not compatible with each other.
It has been demonstrated that the above-described game is the simplest two-player game of its type in which quantum pseudo-telepathy allows a win with probability one. [10] Other games in which quantum pseudo-telepathy occurs have been studied, including larger magic square games, [11] graph colouring games [12] giving rise to the notion of quantum chromatic number, [13] and multiplayer games involving more than two participants. [14]
In July 2022 a study reported the experimental demonstration of quantum pseudotelepathy via playing the nonlocal version of Mermin-Peres magic square game. [15]
The Greenberger–Horne–Zeilinger (GHZ) game is another example of quantum pseudo-telepathy. Classically, the game has 0.75 winning probability. However, with a quantum strategy, the players can achieve a winning probability of 1, meaning they always win.
In the game there are three players, Alice, Bob, and Carol playing against a referee. The referee poses a binary question to each player (either or ). The three players each respond with an answer again in the form of either or . Therefore, when the game is played the three questions of the referee x, y, z are drawn from the 4 options . For example, if question triple is chosen, then Alice receives bit 0, Bob receives bit 1, and Carol receives bit 1 from the referee. Based on the question bit received, Alice, Bob, and Carol each respond with an answer a, b, c, also in the form of 0 or 1. The players can formulate a strategy together prior to the start of the game. However, no communication is allowed during the game itself.
The players win if , where indicates OR condition and indicates summation of answers modulo 2. In other words, the sum of three answers has to be even if . Otherwise, the sum of answers has to be odd.
0 | 0 | 0 | 0 mod 2 |
1 | 1 | 0 | 1 mod 2 |
1 | 0 | 1 | 1 mod 2 |
0 | 1 | 1 | 1 mod 2 |
Classically, Alice, Bob, and Carol can employ a deterministic strategy that always end up with odd sum (e.g. Alice always output 1. Bob and Carol always output 0). The players win 75% of the time and only lose if the questions are .
In fact, this is the best winning strategy classically. We can only satisfy a maximum of 3 out of 4 winning conditions. Let be Alice's response to question 0 and 1 respectively, be Bob's response to question 0, 1, and be Carol's response to question 0, 1. We can write all constraints that satisfy winning conditions as
Suppose that there is a classical strategy that satisfies all four winning conditions, all four conditions hold true. Through observation, each term appears twice on the left hand side. Hence, the left side sum = 0 mod 2. However, the right side sum = 1 mod 2. The contradiction shows that all four winning conditions cannot be simultaneously satisfied.
Now we have come to the interesting part where Alice, Bob, and Carol decided to adopt a quantum strategy. The three of them now share a tripartite entangled state , known as the GHZ state.
If question 0 is received, the player makes a measurement in the X basis . If question 1 is received, the player makes a measurement in the Y basis . In both cases, the players give answer 0 if the result of the measurement is the first state of the pair, and answer 1 if the result is the second state of the pair.
It is easy to check that with this strategy the players win the game with probability 1.
The Einstein–Podolsky–Rosen (EPR) paradox is a thought experiment proposed by physicists Albert Einstein, Boris Podolsky and Nathan Rosen which argues that the description of physical reality provided by quantum mechanics is incomplete. In a 1935 paper titled "Can Quantum-Mechanical Description of Physical Reality be Considered Complete?", they argued for the existence of "elements of reality" that were not part of quantum theory, and speculated that it should be possible to construct a theory containing these hidden variables. Resolutions of the paradox have important implications for the interpretation of quantum mechanics.
In physics, the no-cloning theorem states that it is impossible to create an independent and identical copy of an arbitrary unknown quantum state, a statement which has profound implications in the field of quantum computing among others. The theorem is an evolution of the 1970 no-go theorem authored by James Park, in which he demonstrates that a non-disturbing measurement scheme which is both simple and perfect cannot exist. The aforementioned theorems do not preclude the state of one system becoming entangled with the state of another as cloning specifically refers to the creation of a separable state with identical factors. For example, one might use the controlled NOT gate and the Walsh–Hadamard gate to entangle two qubits without violating the no-cloning theorem as no well-defined state may be defined in terms of a subsystem of an entangled state. The no-cloning theorem concerns only pure states whereas the generalized statement regarding mixed states is known as the no-broadcast theorem.
Quantum teleportation is a technique for transferring quantum information from a sender at one location to a receiver some distance away. While teleportation is commonly portrayed in science fiction as a means to transfer physical objects from one location to the next, quantum teleportation only transfers quantum information. The sender does not have to know the particular quantum state being transferred. Moreover, the location of the recipient can be unknown, but to complete the quantum teleportation, classical information needs to be sent from sender to receiver. Because classical information needs to be sent, quantum teleportation cannot occur faster than the speed of light.
In quantum computing, a qubit or quantum bit is a basic unit of quantum information—the quantum version of the classic binary bit physically realized with a two-state device. A qubit is a two-state quantum-mechanical system, and is one of the simplest quantum systems displaying the peculiarity of quantum mechanics. Examples include the spin of the electron in which the two levels can be taken as spin up and spin down; or the polarization of a single photon in which the two spin states can also be measured as horizontal and vertical linear polarization. In a classical system, a bit would have to be in one state or the other. However, quantum mechanics allows the qubit to be in a coherent superposition of multiple states simultaneously—a property that is fundamental to quantum mechanics and quantum computing.
Quantum entanglement is the phenomenon of a group of particles being generated, interacting, or sharing spatial proximity in such a way that the quantum state of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance. The topic of quantum entanglement is at the heart of the disparity between classical and quantum physics: entanglement is a primary feature of quantum mechanics not present in classical mechanics.
Bell's theorem is a term encompassing a number of closely related results in physics, all of which determine that quantum mechanics is incompatible with local hidden-variable theories, given some basic assumptions about the nature of measurement. "Local" here refers to the principle of locality, the idea that a particle can only be influenced by its immediate surroundings, and that interactions mediated by physical fields cannot propagate faster than the speed of light. "Hidden variables" are supposed properties of quantum particles that are not included in quantum theory but nevertheless affect the outcome of experiments. In the words of physicist John Stewart Bell, for whom this family of results is named, "If [a hidden-variable theory] is local it will not agree with quantum mechanics, and if it agrees with quantum mechanics it will not be local."
In physics, the CHSH inequality can be used in the proof of Bell's theorem, which states that certain consequences of entanglement in quantum mechanics cannot be reproduced by local hidden-variable theories. Experimental verification of the inequality being violated is seen as confirmation that nature cannot be described by such theories. CHSH stands for John Clauser, Michael Horne, Abner Shimony, and Richard Holt, who described it in a much-cited paper published in 1969. They derived the CHSH inequality, which, as with John Stewart Bell's original inequality, is a constraint—on the statistical occurrence of "coincidences" in a Bell test—which is necessarily true if an underlying local hidden-variable theory exists. In practice, the inequality is routinely violated by modern experiments in quantum mechanics.
In the interpretation of quantum mechanics, a local hidden-variable theory is a hidden-variable theory that satisfies the principle of locality. These models attempt to account for the probabilistic features of quantum mechanics via the mechanism of underlying, but inaccessible variables, with the additional requirement that distant events be statistically independent.
In physics, the no-communication theorem or no-signaling principle is a no-go theorem from quantum information theory which states that, during measurement of an entangled quantum state, it is not possible for one observer, by making a measurement of a subsystem of the total state, to communicate information to another observer. The theorem is important because, in quantum mechanics, quantum entanglement is an effect by which certain widely separated events can be correlated in ways that, at first glance, suggest the possibility of communication faster-than-light. The no-communication theorem gives conditions under which such transfer of information between two observers is impossible. These results can be applied to understand the so-called paradoxes in quantum mechanics, such as the EPR paradox, or violations of local realism obtained in tests of Bell's theorem. In these experiments, the no-communication theorem shows that failure of local realism does not lead to what could be referred to as "spooky communication at a distance".
LOCC, or local operations and classical communication, is a method in quantum information theory where a local (product) operation is performed on part of the system, and where the result of that operation is "communicated" classically to another part where usually another local operation is performed conditioned on the information received.
In physics, in the area of quantum information theory, a Greenberger–Horne–Zeilinger state is a certain type of entangled quantum state that involves at least three subsystems. The four-particle version was first studied by Daniel Greenberger, Michael Horne and Anton Zeilinger in 1989, and the three-particle version was introduced by N. David Mermin in 1990. Extremely non-classical properties of the state have been observed, contradicting intuitive notions of locality and causality. GHZ states for large numbers of qubits are theorized to give enhanced performance for metrology compared to other qubit superposition states.
BB84 is a quantum key distribution scheme developed by Charles Bennett and Gilles Brassard in 1984. It is the first quantum cryptography protocol. The protocol is provably secure assuming a perfect implementation, relying on two conditions: (1) the quantum property that information gain is only possible at the expense of disturbing the signal if the two states one is trying to distinguish are not orthogonal ; and (2) the existence of an authenticated public classical channel. It is usually explained as a method of securely communicating a private key from one party to another for use in one-time pad encryption. The proof of BB84 depends on a perfect implementation. Side channel attacks exist, taking advantage of non-quantum sources of information. Since this information is non-quantum, it can be intercepted without measuring or cloning quantum particles.
Quantum game theory is an extension of classical game theory to the quantum domain. It differs from classical game theory in three primary ways:
In theoretical physics, quantum nonlocality refers to the phenomenon by which the measurement statistics of a multipartite quantum system do not allow an interpretation with local realism. Quantum nonlocality has been experimentally verified under a variety of physical assumptions.
The one-way quantum computer, also known as measurement-based quantum computer (MBQC), is a method of quantum computing that first prepares an entangled resource state, usually a cluster state or graph state, then performs single qubit measurements on it. It is "one-way" because the resource state is destroyed by the measurements.
In quantum information and quantum computing, a cluster state is a type of highly entangled state of multiple qubits. Cluster states are generated in lattices of qubits with Ising type interactions. A cluster C is a connected subset of a d-dimensional lattice, and a cluster state is a pure state of the qubits located on C. They are different from other types of entangled states such as GHZ states or W states in that it is more difficult to eliminate quantum entanglement in the case of cluster states. Another way of thinking of cluster states is as a particular instance of graph states, where the underlying graph is a connected subset of a d-dimensional lattice. Cluster states are especially useful in the context of the one-way quantum computer. For a comprehensible introduction to the topic see.
Entanglement distillation is the transformation of N copies of an arbitrary entangled state into some number of approximately pure Bell pairs, using only local operations and classical communication.
Quantum refereed game in quantum information processing is a class of games in the general theory of quantum games. It is played between two players, Alice and Bob, and arbitrated by a referee. The referee outputs the pay-off for the players after interacting with them for a fixed number of rounds, while exchanging quantum information.
Quantum complex networks are complex networks whose nodes are quantum computing devices. Quantum mechanics has been used to create secure quantum communications channels that are protected from hacking. Quantum communications offer the potential for secure enterprise-scale solutions.
Quantum secret sharing (QSS) is a quantum cryptographic scheme for secure communication that extends beyond simple quantum key distribution. It modifies the classical secret sharing (CSS) scheme by using quantum information and the no-cloning theorem to attain the ultimate security for communications.