Graph coloring game

Last updated

The graph coloring game is a mathematical game related to graph theory. Coloring game problems arose as game-theoretic versions of well-known graph coloring problems. In a coloring game, two players use a given set of colors to construct a coloring of a graph, following specific rules depending on the game we consider. One player tries to successfully complete the coloring of the graph, when the other one tries to prevent him from achieving it.

Contents

Vertex coloring game

The vertex coloring game was introduced in 1981 by Brams [1] and rediscovered ten years after by Bodlaender. [2] Its rules are as follows:

  1. Alice and Bob color the vertices of a graph G with a set k of colors.
  2. Alice and Bob take turns, coloring properly an uncolored vertex (in the standard version, Alice begins).
  3. If a vertex v is impossible to color properly (for any color, v has a neighbor colored with it), then Bob wins.
  4. If the graph is completely colored, then Alice wins.

The game chromatic number of a graph , denoted by , is the minimum number of colors needed for Alice to win the vertex coloring game on . Trivially, for every graph , we have , where is the chromatic number of and its maximum degree. [3]

In the 1991 Bodlaender's paper, [4] the computational complexity was left as "an interesting open problem". Only in 2020 it was proved that the game is PSPACE-Complete. [5]


Relation with other notions

Acyclic coloring. Every graph with acyclic chromatic number has . [6]

Marking game. For every graph , , where is the game coloring number of . Almost every known upper bound for the game chromatic number of graphs are obtained from bounds on the game coloring number.

Cycle-restrictions on edges. If every edge of a graph belongs to at most cycles, then . [7]

Graph Classes

For a class of graphs, we denote by the smallest integer such that every graph of has . In other words, is the exact upper bound for the game chromatic number of graphs in this class. This value is known for several standard graph classes, and bounded for some others:

Cartesian products. The game chromatic number of the cartesian product is not bounded by a function of and . In particular, the game chromatic number of any complete bipartite graph is equal to 3, but there is no upper bound for for arbitrary . [18] On the other hand, the game chromatic number of is bounded above by a function of and . In particular, if and are both at most , then . [19]

Open problems

These questions are still open to this date.

More colors for Alice [21]
  • Suppose Alice has a winning strategy for the vertex coloring game on a graph G with k colors. Does she have one for k+1 colors ?
    One would expect the answers to be "yes", as having more colors seems an advantage to Alice. However, no proof exists that this statement is true.
  • Is there a function f such that, if Alice has a winning strategy for the vertex coloring game on a graph G with k colors, then Alice has a winning strategy on G with f(k) ?
    Relaxation of the previous question.
Relations with other notions [21]
  • Suppose a monotone class of graphs (i.e. a class of graphs closed by subgraphs) has bounded game chromatic number. Is it true that this class of graph has bounded game coloring number  ?
  • Suppose a monotone class of graphs (i.e. a class of graphs closed by subgraphs) has bounded game chromatic number. Is it true that this class of graph has bounded arboricity  ?
  • Is it true that a monotone class of graphs of bounded game chromatic number has bounded acyclic chromatic number  ?
Reducing maximum degree [9]
  • Conjecture: Is is a forest, there exists such that and .
  • Let be the class of graphs such that for any , there exists such that and . What families of graphs are in  ?
Hypercubes [18]
  • Is it true that for any hypercube  ?
    It is known to be true for . [18]

Edge coloring game

The edge coloring game, introduced by Lam, Shiu and Zu, [22] is similar to the vertex coloring game, except Alice and Bob construct a proper edge coloring instead of a proper vertex coloring. Its rules are as follows:

  1. Alice and Bob are coloring the edges a graph G with a set k of colors.
  2. Alice and Bob are taking turns, coloring properly an uncolored edge (in the standard version, Alice begins).
  3. If an edge e is impossible to color properly (for any color, e is adjacent to an edge colored with it), then Bob wins.
  4. If the graph is completely edge-colored, then Alice wins.

Although this game can be considered as a particular case of the vertex coloring game on line graphs, it is mainly considered in the scientific literature as a distinct game. The game chromatic index of a graph , denoted by , is the minimum number of colors needed for Alice to win this game on .

General case

For every graph G, . There are graphs reaching these bounds but all the graphs we know reaching this upper bound have small maximum degree. [22] There exists graphs with for arbitrary large values of . [23]

Conjecture.There is an such that, for any arbitrary graph , we have .
This conjecture is true when is large enough compared to the number of vertices in . [23]

Graph Classes

For a class of graphs, we denote by the smallest integer such that every graph of has . In other words, is the exact upper bound for the game chromatic index of graphs in this class. This value is known for several standard graph classes, and bounded for some others:

Open Problems

Upper bound. Is there a constant such that for each graph  ? If it is true, is enough ? [22]

Conjecture on large minimum degrees.There are a and an integer such that any graph with satisfies . [23]

Incidence coloring game

The incidence coloring game is a graph coloring game, introduced by Andres, [27] and similar to the vertex coloring game, except Alice and Bob construct a proper incidence coloring instead of a proper vertex coloring. Its rules are as follows:

  1. Alice and Bob are coloring the incidences of a graph G with a set k of colors.
  2. Alice and Bob are taking turns, coloring properly an uncolored incidence (in the standard version, Alice begins).
  3. If an incidence i is impossible to color properly (for any color, i is adjacent to an incident colored with it), then Bob wins.
  4. If all the incidences are properly colored, then Alice wins.

The incidence game chromatic number of a graph , denoted by , is the minimum number of colors needed for Alice to win this game on .

For every graph with maximum degree , we have . [27]

Relations with other notions

Graph Classes

For a class of graphs, we denote by the smallest integer such that every graph of has .

Open Problems

Notes

  1. Gardner (1981)
  2. Bodlaender (1991)
  3. With less colors than the chromatic number, there is no proper coloring of G and so Alice cannot win. With more colors than the maximum degree, there is always an available color for coloring a vertex and so Alice cannot lose.
  4. Bodlaender (1991)
  5. Costa, Pessoa, Soares, Sampaio (2020)
  6. Dinski & Zhu (1999)
  7. Junosza-Szaniawski & Rożej (2010)
  8. Faigle et al. (1993), and implied by Junosza-Szaniawski & Rożej (2010)
  9. 1 2 Dunn et al. (2014)
  10. Sidorowicz (2007), and implied by Junosza-Szaniawski & Rożej (2010)
  11. Guan & Zhu (1999)
  12. Upper bound by Zhu (2008), improving previous bounds of 33 in Kierstead & Trotter (1994), 30 implied by Dinski & Zhu (1999), 19 in Zhu (1999) and 18 in Kierstead (2000). Lower bound claimed by Kierstead & Trotter (1994). See a survey dedicated to the game chromatic number of planar graphs in Bartnicki et al. (2007).
  13. Sekigushi (2014)
  14. He et al. (2002)
  15. Raspaud & Wu (2009)
  16. Zhu (2000)
  17. Faigle et al. (1993)
  18. 1 2 3 4 Peterin (2007)
  19. Bradshaw (2021)
  20. 1 2 3 Sia (2009)
  21. 1 2 Zhu (1999)
  22. 1 2 3 4 Lam, Shiu & Xu (1999)
  23. 1 2 3 Beveridge et al. (2008)
  24. Bartnicki & Grytczuk (2008), improving results on k-degenerate graphs in Cai & Zhu (2001)
  25. Upper bound of Δ+2 by Lam, Shiu & Xu (1999), then bound of Δ+1 by Erdös et al. (2004) for cases Δ=3 and Δ≥6, and by Andres (2006) for case Δ=5.
  26. Conditions on forests with Δ=4 are in Chan & Nong (2014)
  27. 1 2 3 4 5 6 7 Andres (2009a), see also erratum in Andres (2009b)
  28. 1 2 Charpentier & Sopena (2014), extending results of Charpentier & Sopena (2013).
  29. Kim (2011), improving a similar result for k ≥ 7 in Andres (2009a) (see also erratum in Andres (2009b))
  30. Kim (2011)

References (chronological order)

Related Research Articles

<span class="mw-page-title-main">Graph coloring</span> Methodic assignment of colors to elements of a graph

In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. Similarly, an edge coloring assigns a color to each edge so that no two adjacent edges are of the same color, and a face coloring of a planar graph assigns a color to each face or region so that no two faces that share a boundary have the same color.

<span class="mw-page-title-main">Extremal graph theory</span>

Extremal graph theory is a branch of combinatorics, itself an area of mathematics, that lies at the intersection of extremal combinatorics and graph theory. In essence, extremal graph theory studies how global properties of a graph influence local substructure. Results in extremal graph theory deal with quantitative connections between various graph properties, both global and local, and problems in extremal graph theory can often be formulated as optimization problems: how big or small a parameter of a graph can be, given some constraints that the graph has to satisfy? A graph that is an optimal solution to such an optimization problem is called an extremal graph, and extremal graphs are important objects of study in extremal graph theory.

<span class="mw-page-title-main">Edge coloring</span> Problem of coloring a graphs edges such that meeting edges do not match

In graph theory, a proper edge coloring of a graph is an assignment of "colors" to the edges of the graph so that no two incident edges have the same color. For example, the figure to the right shows an edge coloring of a graph by the colors red, blue, and green. Edge colorings are one of several different types of graph coloring. The edge-coloring problem asks whether it is possible to color the edges of a given graph using at most k different colors, for a given value of k, or with the fewest possible colors. The minimum required number of colors for the edges of a given graph is called the chromatic index of the graph. For example, the edges of the graph in the illustration can be colored by three colors but cannot be colored by two colors, so the graph shown has chromatic index three.

<span class="mw-page-title-main">Total coloring</span>

In graph theory, total coloring is a type of graph coloring on the vertices and edges of a graph. When used without any qualification, a total coloring is always assumed to be proper in the sense that no adjacent edges, no adjacent vertices and no edge and either endvertex are assigned the same color. The total chromatic number χ″(G) of a graph G is the fewest colors needed in any total coloring of G.

<span class="mw-page-title-main">Fractional coloring</span> Graph coloring where graph elements are assigned sets of colors

Fractional coloring is a topic in a young branch of graph theory known as fractional graph theory. It is a generalization of ordinary graph coloring. In a traditional graph coloring, each vertex in a graph is assigned some color, and adjacent vertices — those connected by edges — must be assigned different colors. In a fractional coloring however, a set of colors is assigned to each vertex of a graph. The requirement about adjacent vertices still holds, so if two vertices are joined by an edge, they must have no colors in common.

<span class="mw-page-title-main">Hadwiger conjecture (graph theory)</span>

In graph theory, the Hadwiger conjecture states that if is loopless and has no minor then its chromatic number satisfies . It is known to be true for . The conjecture is a generalization of the four-color theorem and is considered to be one of the most important and challenging open problems in the field.

In the mathematical area of graph theory, the Mycielskian or Mycielski graph of an undirected graph is a larger graph formed from it by a construction of Jan Mycielski (1955). The construction preserves the property of being triangle-free but increases the chromatic number; by applying the construction repeatedly to a triangle-free starting graph, Mycielski showed that there exist triangle-free graphs with arbitrarily large chromatic number.

Discrepancy of hypergraphs is an area of discrepancy theory.

<span class="mw-page-title-main">Circular coloring</span>

In graph theory, circular coloring is a kind of coloring that may be viewed as a refinement of the usual graph coloring. The circular chromatic number of a graph , denoted can be given by any of the following definitions, all of which are equivalent.

  1. is the infimum over all real numbers so that there exists a map from to a circle of circumference 1 with the property that any two adjacent vertices map to points at distance along this circle.
  2. is the infimum over all rational numbers so that there exists a map from to the cyclic group with the property that adjacent vertices map to elements at distance apart.
  3. In an oriented graph, declare the imbalance of a cycle to be divided by the minimum of the number of edges directed clockwise and the number of edges directed counterclockwise. Define the imbalance of the oriented graph to be the maximum imbalance of a cycle. Now, is the minimum imbalance of an orientation of .

In extremal graph theory, the forbidden subgraph problem is the following problem: given a graph , find the maximal number of edges an -vertex graph can have such that it does not have a subgraph isomorphic to . In this context, is called a forbidden subgraph.

<span class="mw-page-title-main">Chvátal graph</span>

In the mathematical field of graph theory, the Chvátal graph is an undirected graph with 12 vertices and 24 edges, discovered by Václav Chvátal in 1970. It is the smallest graph that is triangle-free, 4-regular, and 4-chromatic.

In graph theory, a mathematical discipline, coloring refers to an assignment of colours or labels to vertices, edges and faces of a graph. Defective coloring is a variant of proper vertex coloring. In a proper vertex coloring, the vertices are coloured such that no adjacent vertices have the same colour. In defective coloring, on the other hand, vertices are allowed to have neighbours of the same colour to a certain extent.

In graph theory the Goldberg–Seymour conjecture states that

<span class="mw-page-title-main">T-coloring</span>

In graph theory, a T-Coloring of a graph , given the set T of nonnegative integers containing 0, is a function that maps each vertex to a positive integer (color) such that if u and w are adjacent then . In simple words, the absolute value of the difference between two colors of adjacent vertices must not belong to fixed set T. The concept was introduced by William K. Hale. If T = {0} it reduces to common vertex coloring.

In graph theory, a branch of mathematics, the Erdős–Hajnal conjecture states that families of graphs defined by forbidden induced subgraphs have either large cliques or large independent sets. It is named for Paul Erdős and András Hajnal.

In graph theory, the act of coloring generally implies the assignment of labels to vertices, edges or faces in a graph. The incidence coloring is a special graph labeling where each incidence of an edge with a vertex is assigned a color under certain constraints.

<span class="mw-page-title-main">Pancake graph</span>

In the mathematical field of graph theory, the pancake graphPn or n-pancake graph is a graph whose vertices are the permutations of n symbols from 1 to n and its edges are given between permutations transitive by prefix reversals.

In graph theory, the graph removal lemma states that when a graph contains few copies of a given subgraph, then all of the copies can be eliminated by removing a small number of edges. The special case in which the subgraph is a triangle is known as the triangle removal lemma.

In mathematics, the hypergraph regularity method is a powerful tool in extremal graph theory that refers to the combined application of the hypergraph regularity lemma and the associated counting lemma. It is a generalization of the graph regularity method, which refers to the use of Szemerédi's regularity and counting lemmas.

The method of (hypergraph) containers is a powerful tool that can help characterize the typical structure and/or answer extremal questions about families of discrete objects with a prescribed set of local constraints. Such questions arise naturally in extremal graph theory, additive combinatorics, discrete geometry, coding theory, and Ramsey theory; they include some of the most classical problems in the associated fields.