Cactus graph

Last updated
A cactus graph Cactus graph.svg
A cactus graph

In graph theory, a cactus (sometimes called a cactus tree) is a connected graph in which any two simple cycles have at most one vertex in common. Equivalently, it is a connected graph in which every edge belongs to at most one simple cycle, or (for nontrivial cacti) in which every block (maximal subgraph without a cut-vertex) is an edge or a cycle.

Contents

Properties

Cacti are outerplanar graphs. Every pseudotree is a cactus. A nontrivial graph is a cactus if and only if every block is either a simple cycle or a single edge.

The family of graphs in which each component is a cactus is downwardly closed under graph minor operations. This graph family may be characterized by a single forbidden minor, the four-vertex diamond graph formed by removing an edge from the complete graph K4. [1]

Triangular cactus

Friendship graphs are triangular cacti Friendship graphs.svg
Friendship graphs are triangular cacti

A triangular cactus is a special type of cactus graph such that each cycle has length three and each edge belongs to a cycle. For instance, the friendship graphs, graphs formed from a collection of triangles joined together at a single shared vertex, are triangular cacti. As well as being cactus graphs the triangular cacti are also block graphs and locally linear graphs.

Triangular cactuses have the property that they remain connected if any matching is removed from them; for a given number of vertices, they have the fewest possible edges with this property. Every tree with an odd number of vertices may be augmented to a triangular cactus by adding edges to it, giving a minimal augmentation with the property of remaining connected after the removal of a matching. [2]

The largest triangular cactus in any graph may be found in polynomial time using an algorithm for the matroid parity problem. Since triangular cactus graphs are planar graphs, the largest triangular cactus can be used as an approximation to the largest planar subgraph, an important subproblem in planarization. As an approximation algorithm, this method has approximation ratio 4/9, the best known for the maximum planar subgraph problem. [3]

The algorithm for finding the largest triangular cactus is associated with a theorem of Lovász and Plummer that characterizes the number of triangles in this largest cactus. [4] Lovász and Plummer consider pairs of partitions of the vertices and edges of the given graph into subsets, with the property that every triangle of the graph either has two vertices in a single class of the vertex partition or all three edges in a single class of the edge partition; they call a pair of partitions with this property valid. Then the number of triangles in the largest triangular cactus equals the maximum, over pairs of valid partitions and , of

,

where is the number of vertices in the given graph and is the number of vertex classes met by edge class .

Every plane graph contains a cactus subgraph which includes at least fraction of the triangular faces of . This result implies a direct analysis of the 4/9 - approximation algorithm for maximum planar subgraph problem without using the above min-max formula. [5]

Rosa's Conjecture

An important conjecture related to the triangular cactus is the Rosa's Conjecture, named after Alexander Rosa, which says that all triangular cacti are graceful or nearly-graceful. [6] More precisely

All triangular cacti with t ≡ 0, 1 mod 4 blocks are graceful, and those with t ≡ 2, 3 mod 4 are near graceful.

Algorithms and applications

Some facility location problems which are NP-hard for general graphs, as well as some other graph problems, may be solved in polynomial time for cacti. [7] [8]

Since cacti are special cases of outerplanar graphs, a number of combinatorial optimization problems on graphs may be solved for them in polynomial time. [9]

Cacti represent electrical circuits that have useful properties. An early application of cacti was associated with the representation of op-amps. [10] [11] [12]

Cacti have also been used in comparative genomics as a way of representing the relationship between different genomes or parts of genomes. [13]

If a cactus is connected, and each of its vertices belongs to at most two blocks, then it is called a Christmas cactus. Every polyhedral graph has a Christmas cactus subgraph that includes all of its vertices, a fact that plays an essential role in a proof by Leighton & Moitra (2010) that every polyhedral graph has a greedy embedding in the Euclidean plane, an assignment of coordinates to the vertices for which greedy forwarding succeeds in routing messages between all pairs of vertices. [14]

In topological graph theory, the graphs whose cellular embeddings are all planar are exactly the subfamily of the cactus graphs with the additional property that each vertex belongs to at most one cycle. These graphs have two forbidden minors, the diamond graph and the five-vertex friendship graph. [15]

History

Cacti were first studied under the name of Husimi trees, bestowed on them by Frank Harary and George Eugene Uhlenbeck in honor of previous work on these graphs by Kôdi Husimi. [16] [17] The same Harary–Uhlenbeck paper reserves the name "cactus" for graphs of this type in which every cycle is a triangle, but now allowing cycles of all lengths is standard.

Meanwhile, the name Husimi tree commonly came to refer to graphs in which every block is a complete graph (equivalently, the intersection graphs of the blocks in some other graph). This usage had little to do with the work of Husimi, and the more pertinent term block graph is now used for this family; however, because of this ambiguity this phrase has become less frequently used to refer to cactus graphs. [18]

Related Research Articles

<span class="mw-page-title-main">Graph theory</span> Area of discrete mathematics

In mathematics, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of vertices which are connected by edges. A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics.

In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other. Such a drawing is called a plane graph or planar embedding of the graph. A plane graph can be defined as a planar graph with a mapping from every node to a point on a plane, and from every edge to a plane curve on that plane, such that the extreme points of each curve are the points mapped from its end nodes, and all curves are disjoint except on their extreme points.

<span class="mw-page-title-main">Hamiltonian path</span> Path in a graph that visits each vertex exactly once

In the mathematical field of graph theory, a Hamiltonian path is a path in an undirected or directed graph that visits each vertex exactly once. A Hamiltonian cycle is a cycle that visits each vertex exactly once. A Hamiltonian path that starts and ends at adjacent vertices can be completed by adding one more edge to form a Hamiltonian cycle, and removing any edge from a Hamiltonian cycle produces a Hamiltonian path. The computational problems of determining whether such paths and cycles exist in graphs are NP-complete; see Hamiltonian path problem for details.

This is a glossary of graph theory. Graph theory is the study of graphs, systems of nodes or vertices connected in pairs by lines or edges.

<span class="mw-page-title-main">Outerplanar graph</span> Non-crossing graph with vertices on outer face

In graph theory, an outerplanar graph is a graph that has a planar drawing for which all vertices belong to the outer face of the drawing.

<span class="mw-page-title-main">Perfect graph</span> Graph with tight clique-coloring relation

In graph theory, a perfect graph is a graph in which the chromatic number equals the size of the maximum clique, both in the graph itself and in every induced subgraph. In all graphs, the chromatic number is greater than or equal to the size of the maximum clique, but they can be far apart. A graph is perfect when these numbers are equal, and remain equal after the deletion of arbitrary subsets of vertices.

In the mathematical discipline of graph theory, the line graph of an undirected graph G is another graph L(G) that represents the adjacencies between edges of G. L(G) is constructed in the following way: for each edge in G, make a vertex in L(G); for every two edges in G that have a vertex in common, make an edge between their corresponding vertices in L(G).

<span class="mw-page-title-main">Edge coloring</span> Problem of coloring a graphs edges such that meeting edges do not match

In graph theory, a proper edge coloring of a graph is an assignment of "colors" to the edges of the graph so that no two incident edges have the same color. For example, the figure to the right shows an edge coloring of a graph by the colors red, blue, and green. Edge colorings are one of several different types of graph coloring. The edge-coloring problem asks whether it is possible to color the edges of a given graph using at most k different colors, for a given value of k, or with the fewest possible colors. The minimum required number of colors for the edges of a given graph is called the chromatic index of the graph. For example, the edges of the graph in the illustration can be colored by three colors but cannot be colored by two colors, so the graph shown has chromatic index three.

<span class="mw-page-title-main">Chordal graph</span> Graph where all long cycles have a chord

In the mathematical area of graph theory, a chordal graph is one in which all cycles of four or more vertices have a chord, which is an edge that is not part of the cycle but connects two vertices of the cycle. Equivalently, every induced cycle in the graph should have exactly three vertices. The chordal graphs may also be characterized as the graphs that have perfect elimination orderings, as the graphs in which each minimal separator is a clique, and as the intersection graphs of subtrees of a tree. They are sometimes also called rigid circuit graphs or triangulated graphs: a chordal completion of a graph is typically called a triangulation of that graph.

<span class="mw-page-title-main">Feedback arc set</span> Edges that hit all cycles in a graph

In graph theory and graph algorithms, a feedback arc set or feedback edge set in a directed graph is a subset of the edges of the graph that contains at least one edge out of every cycle in the graph. Removing these edges from the graph breaks all of the cycles, producing an acyclic subgraph of the given graph, often called a directed acyclic graph. A feedback arc set with the fewest possible edges is a minimum feedback arc set and its removal leaves a maximum acyclic subgraph; weighted versions of these optimization problems are also used. If a feedback arc set is minimal, meaning that removing any edge from it produces a subset that is not a feedback arc set, then it has an additional property: reversing all of its edges, rather than removing them, produces a directed acyclic graph.

<span class="mw-page-title-main">Dual graph</span> Graph representing faces of another graph

In the mathematical discipline of graph theory, the dual graph of a planar graph G is a graph that has a vertex for each face of G. The dual graph has an edge for each pair of faces in G that are separated from each other by an edge, and a self-loop when the same face appears on both sides of an edge. Thus, each edge e of G has a corresponding dual edge, whose endpoints are the dual vertices corresponding to the faces on either side of e. The definition of the dual depends on the choice of embedding of the graph G, so it is a property of plane graphs rather than planar graphs. For planar graphs generally, there may be multiple dual graphs, depending on the choice of planar embedding of the graph.

<span class="mw-page-title-main">Unit distance graph</span> Geometric graph with unit edge lengths

In mathematics, particularly geometric graph theory, a unit distance graph is a graph formed from a collection of points in the Euclidean plane by connecting two points whenever the distance between them is exactly one. To distinguish these graphs from a broader definition that allows some non-adjacent pairs of vertices to be at distance one, they may also be called strict unit distance graphs or faithful unit distance graphs. As a hereditary family of graphs, they can be characterized by forbidden induced subgraphs. The unit distance graphs include the cactus graphs, the matchstick graphs and penny graphs, and the hypercube graphs. The generalized Petersen graphs are non-strict unit distance graphs.

In graph theory, the planar separator theorem is a form of isoperimetric inequality for planar graphs, that states that any planar graph can be split into smaller pieces by removing a small number of vertices. Specifically, the removal of vertices from an n-vertex graph can partition the graph into disjoint subgraphs each of which has at most vertices.

<span class="mw-page-title-main">Maximum cut</span> Problem of finding a maximum cut in a graph

In a graph, a maximum cut is a cut whose size is at least the size of any other cut. That is, it is a partition of the graph's vertices into two complementary sets S and T, such that the number of edges between S and T is as large as possible. Finding such a cut is known as the max-cut problem.

<span class="mw-page-title-main">Halin graph</span> Mathematical tree with cycle through leaves

In graph theory, a Halin graph is a type of planar graph, constructed by connecting the leaves of a tree into a cycle. The tree must have at least four vertices, none of which has exactly two neighbors; it should be drawn in the plane so none of its edges cross, and the cycle connects the leaves in their clockwise ordering in this embedding. Thus, the cycle forms the outer face of the Halin graph, with the tree inside it.

<span class="mw-page-title-main">Herschel graph</span> Bipartite non-Hamiltonian polyhedral graph

In graph theory, a branch of mathematics, the Herschel graph is a bipartite undirected graph with 11 vertices and 18 edges. It is a polyhedral graph, and is the smallest polyhedral graph that does not have a Hamiltonian cycle, a cycle passing through all its vertices. It is named after British astronomer Alexander Stewart Herschel, because of Herschel's studies of Hamiltonian cycles in polyhedral graphs.

In graph theory, a mathematical discipline, coloring refers to an assignment of colours or labels to vertices, edges and faces of a graph. Defective coloring is a variant of proper vertex coloring. In a proper vertex coloring, the vertices are coloured such that no adjacent vertices have the same colour. In defective coloring, on the other hand, vertices are allowed to have neighbours of the same colour to a certain extent.

<span class="mw-page-title-main">Block graph</span> Graph whose biconnected components are all cliques

In graph theory, a branch of combinatorial mathematics, a block graph or clique tree is a type of undirected graph in which every biconnected component (block) is a clique.

<span class="mw-page-title-main">Apollonian network</span> Graph formed by subdivision of triangles

In combinatorial mathematics, an Apollonian network is an undirected graph formed by a process of recursively subdividing a triangle into three smaller triangles. Apollonian networks may equivalently be defined as the planar 3-trees, the maximal planar chordal graphs, the uniquely 4-colorable planar graphs, and the graphs of stacked polytopes. They are named after Apollonius of Perga, who studied a related circle-packing construction.

<span class="mw-page-title-main">Matroid parity problem</span> Largest independent set of paired elements

In combinatorial optimization, the matroid parity problem is a problem of finding the largest independent set of paired elements in a matroid. The problem was formulated by Lawler (1976) as a common generalization of graph matching and matroid intersection. It is also known as polymatroid matching, or the matchoid problem.

References

  1. El-Mallah, Ehab; Colbourn, Charles J. (1988), "The complexity of some edge deletion problems", IEEE Transactions on Circuits and Systems, 35 (3): 354–362, doi:10.1109/31.1748
  2. Farley, Arthur M.; Proskurowski, Andrzej (1982), "Networks immune to isolated line failures", Networks, 12 (4): 393–403, doi:10.1002/net.3230120404, MR   0686540
  3. Călinescu, Gruia; Fernandes, Cristina G; Finkler, Ulrich; Karloff, Howard (2002), "A Better Approximation Algorithm for Finding Planar Subgraphs", Journal of Algorithms, 2, 27 (2): 269–302, CiteSeerX   10.1.1.47.4731 , doi:10.1006/jagm.1997.0920, S2CID   8329680
  4. Lovász, L.; Plummer, M.D. (2009), Matching Theory, AMS Chelsea Publishing Series, ISBN   9780821847596
  5. Chalermsook, Parinya; Schmid, Andreas; Uniyal, Sumedha (2019), "A tight extremal bound on the Lovász cactus number in planar graphs", in Niedermeier, Rolf; Paul, Christophe (eds.), 36th International Symposium on Theoretical Aspects of Computer Science, STACS 2019, March 13-16, 2019, Berlin, Germany, LIPIcs, vol. 126, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 19:1–19:14, arXiv: 1804.03485 , doi: 10.4230/LIPIcs.STACS.2019.19 , ISBN   9783959771009, S2CID   4751972
  6. Rosa, A. (1988), "Cyclic Steiner Triple Systems and Labelings of Triangular Cacti", Scientia, 1: 87–95.
  7. Ben-Moshe, Boaz; Bhattacharya, Binay; Shi, Qiaosheng (2005), "Efficient algorithms for the weighted 2-center problem in a cactus graph", Algorithms and Computation, 16th Int. Symp., ISAAC 2005, Lecture Notes in Computer Science, vol. 3827, Springer-Verlag, pp. 693–703, doi:10.1007/11602613_70, ISBN   978-3-540-30935-2
  8. Zmazek, Blaz; Zerovnik, Janez (2005), "Estimating the traffic on weighted cactus networks in linear time", Ninth International Conference on Information Visualisation (IV'05), pp. 536–541, doi:10.1109/IV.2005.48, ISBN   978-0-7695-2397-2, S2CID   15963409
  9. Korneyenko, N. M. (1994), "Combinatorial algorithms on a class of graphs", Discrete Applied Mathematics, 54 (2–3): 215–217, doi: 10.1016/0166-218X(94)90022-1 . Translated from Notices of the BSSR Academy of Sciences, Ser. Phys.-Math. Sci., (1984) no. 3, pp. 109-111 (in Russian)
  10. Nishi, Tetsuo; Chua, Leon O. (1986), "Topological proof of the Nielsen-Willson theorem", IEEE Transactions on Circuits and Systems, 33 (4): 398–405, doi:10.1109/TCS.1986.1085935
  11. Nishi, Tetsuo; Chua, Leon O. (1986), "Uniqueness of solution for nonlinear resistive circuits containing CCCS's or VCVS's whose controlling coefficients are finite", IEEE Transactions on Circuits and Systems, 33 (4): 381–397, doi:10.1109/TCS.1986.1085934
  12. Nishi, Tetsuo (1991), "On the number of solutions of a class of nonlinear resistive circuit", Proceedings of the IEEE International Symposium on Circuits and Systems, Singapore, pp. 766–769
  13. Paten, Benedict; Diekhans, Mark; Earl, Dent; St. John, John; Ma, Jian; Suh, Bernard; Haussler, David (2010), "Cactus Graphs for Genome Comparisons" , Research in Computational Molecular Biology, Lecture Notes in Computer Science, vol. 6044, pp.  410–425, doi:10.1007/978-3-642-12683-3_27, ISBN   978-3-642-12682-6
  14. Leighton, Tom; Moitra, Ankur (2010), "Some Results on Greedy Embeddings in Metric Spaces" (PDF), Discrete & Computational Geometry , 44 (3): 686–705, doi: 10.1007/s00454-009-9227-6 , S2CID   11186402 .
  15. Nordhaus, E. A.; Ringeisen, R. D.; Stewart, B. M.; White, A. T. (1972), "A Kuratowski-type theorem for the maximum genus of a graph", Journal of Combinatorial Theory, Series B, 12 (3): 260–267, doi:10.1016/0095-8956(72)90040-8, MR   0299523
  16. Harary, Frank; Uhlenbeck, George E. (1953), "On the number of Husimi trees, I", Proceedings of the National Academy of Sciences , 39 (4): 315–322, Bibcode:1953PNAS...39..315H, doi: 10.1073/pnas.39.4.315 , MR   0053893, PMC   1063779 , PMID   16589268
  17. Husimi, Kodi (1950), "Note on Mayers' theory of cluster integrals", Journal of Chemical Physics, 18 (5): 682–684, Bibcode:1950JChPh..18..682H, doi:10.1063/1.1747725, MR   0038903
  18. See, e.g., MR 0659742, a 1983 review by Robert E. Jamison of a paper using the other definition, which attributes the ambiguity to an error in a book by Mehdi Behzad and Gary Chartrand.