In combinatorial optimization, the matroid parity problem is a problem of finding the largest independent set of paired elements in a matroid. [1] The problem was formulated by Lawler (1976) as a common generalization of graph matching and matroid intersection. [1] [2] It is also known as polymatroid matching, or the matchoid problem. [3]
Matroid parity can be solved in polynomial time for linear matroids. However, it is NP-hard for certain compactly-represented matroids, and requires more than a polynomial number of steps in the matroid oracle model. [1] [4]
Applications of matroid parity algorithms include finding large planar subgraphs [5] and finding graph embeddings of maximum genus. [6] Matroid parity algorithms can also be used to find connected dominating sets and feedback vertex sets in graphs of maximum degree three. [7]
A matroid can be defined from a finite set of elements and from a notion of what it means for subsets of elements to be independent, subject to the following constraints:
Examples of matroids include the linear matroids (in which the elements are vectors in a vector space, with linear independence), the graphic matroids (in which the elements are edges in an undirected graph, independent when they contain no cycle), and the partition matroids (in which the elements belong to a family of disjoint sets, and are independent when they contain at most one element in each set). Graphic matroids and partition matroids are special cases of linear matroids. [1]
In the matroid parity problem, the input consists of a matroid together with a pairing on its elements, so that each element belongs to one pair. The goal is to find a subset of the pairs, as large as possible, so that the union of the pairs in the chosen subset is independent. [1] [2] Another seemingly more general variation, in which the allowable pairs form a graph rather than having only one pair per element, is equivalent: an element appearing in more than one pair could be replaced by multiple copies of the element, one per pair. [8]
The matroid parity problem for linear matroids can be solved by a randomized algorithm in time , where is the number of elements of the matroid, is its rank (the size of the largest independent set), and is the exponent in the time bounds for fast matrix multiplication. [1] In particular, using a matrix multiplication algorithm of Virginia Vassilevska Williams et al., [9] it can be solved in time . Without using fast matrix multiplication, the linear matroid parity problem can be solved in time . [1] It is also possible to find a minimum-weight solution to the matroid parity problem, or a maximum-weight paired independent set, in linear matroids, in time . [10]
These algorithms are based on a linear algebra formulation of the problem by Geelen & Iwata (2005). Suppose that an input to the problem consists of pairs of -dimensional vectors (arranged as column vectors in a matrix of size ). Then the number of pairs in the optimal solution is
where is a block diagonal matrix whose blocks are submatrices of the form
for a sequence of variables . [11] The Schwartz–Zippel lemma can be used to test whether this matrix has full rank or not (that is, whether the solution has size or not), by assigning random values to the variables and testing whether the resulting matrix has determinant zero. By applying a greedy algorithm that removes pairs one at a time by setting their indeterminates to zero as long as the matrix remains of full rank (maintaining the inverse matrix using the Sherman–Morrison formula to check the rank after each removal), one can find a solution whenever this test shows that it exists. Additional methods extend this algorithm to the case that the optimal solution to the matroid parity problem has fewer than pairs. [1]
For graphic matroids, more efficient matroid parity algorithms are known, with running time on graphs with vertices and edges. [12] For simple graphs, is , but for multigraphs, it may be larger, so it is also of interest to have algorithms with smaller or no dependence on and worse dependence on . In these cases, it is also possible to solve the graphic matroid parity problem in randomized expected time , or in time when each pair of edges forms a path. [1]
Although the matroid parity problem is NP-hard for arbitrary matroids, it can still be approximated efficiently. Simple local search algorithms provide a polynomial-time approximation scheme for this problem, and find solutions whose size, as a fraction of the optimal solution size, is arbitrarily close to one. The algorithm starts with the empty set as its solution, and repeatedly attempts to increase the solution size by one by removing at most a constant number of pairs from the solution and replacing them by a different set with one more pair. When no more such moves are possible, the resulting solution is returned as the approximation to the optimal solution. To achieve an approximation ratio of , it suffices to choose to be approximately . [8]
Many other optimization problems can be formulated as linear matroid parity problems, and solved in polynomial time using this formulation.
In an arbitrary graph, the problem of finding the largest set of triangles in a given graph, with no cycles other than the chosen triangles, can be formulated as a matroid parity problem on a graphic matroid whose elements are edges of the graph, with one pair of edges per triangle (duplicating edges if necessary when they belong to more than one triangle). The pairs of elements in a solution to the matroid parity problem for this matroid are the two edges in each triangle of an optimal set of triangles. The same problem can also be described as one of finding the largest Berge-acyclic sub-hypergraph of a 3-uniform hypergraph. In the hypergraph version of the problem, the hyper-edges are the triangles of the given graph. [3]
A cactus graph is a graph in which each two cycles have at most one vertex in common. As a special case, the graphs in which each cycle is a triangle are necessarily cactus graphs. The largest triangular cactus in the given graph can then be found by adding additional edges from a spanning tree, without creating any new cycles, so that the resulting subgraph has the same connected components as the original graph. Cactus graphs are automatically planar graphs, and the problem of finding triangular cactus graphs forms the basis for the best known approximation algorithm to the problem of finding the largest planar subgraph of a given graph, an important step in planarization. The largest triangular cactus always has at least 4/9 the number of edges of the largest planar subgraph, improving the 1/3 approximation ratio obtained by using an arbitrary spanning tree. [5]
A framework of rigid bars in the Euclidean plane, connected at their endpoints at flexible joints, can be fixed into its given position in the plane by fixing the positions of some of its joints, pinning them in place. A set of joints that, when pinned down, make the framework infinitesimally rigid is called a pinning set. Infinitesimal rigidity is, in general, a stronger condition than being unable to move, but the two concepts are the same when the initial placement of the framework is in a suitably generic position. The size of the smallest pinning set is the pinning number of the framework. [3]
Any framework determines a rigidity matrix having a row for each edge and two columns for each vertex, one column for each of the two coordinate dimensions. The nonzeros in the row for each edge lie in the columns for the edge's two endpoints, and equal the coordinate differences of the endpoints. This defines a linear matroid pairing problem in which the pairs of elements are the pairs of columns for each vertex, and in which a set of columns is independent if they are linearly independent as vectors. (This is different from the notion of independence in the rigidity matroid of the graph, which has the rows of the same matrix as its elements.) A set of paired columns is independent if and only if it comes from a set of joints that is complementary to a pinning set. Therefore, a minimum pinning set can be found by complementing the solution to this matroid pairing problem. [13]
A cellular embedding of a given graph onto a surface of the maximum possible genus can be obtained from a Xuong tree of the graph. This is a spanning tree with the property that, in the subgraph of edges not in the tree, the number of connected components with an odd number of edges is as small as possible. The optimal embedding can then be obtained by pairing edges within each component and embedding each pair in such a way that it increases the genus by one. [6]
To formulate the problem of finding a Xuong tree as a matroid parity problem, first subdivide each edge of the given graph into a path, with the length of the path equal to the number of other edges incident to . Then, pair the edges of the subdivided graph, so that each pair of incident edges in the original graph is represented by a single pair of edges in the subdivided graph, and each edge in the subdivided graph is paired exactly once. Solve a matroid parity problem with the paired edges of the subdivided graph, using its cographic matroid. This is the dual matroid of a graphic matroid. In it, a subset of edges is independent if its removal does not separate the graph. Any spanning tree of the original graph that avoids the edges used in the matroid parity solution is necessarily a Xuong tree. Each pair selected in the solution can be used to increase the genus of the embedding, so the total genus is the number of selected pairs. [6]
The clique problem, of finding a -vertex complete subgraph in a given -vertex graph , can be transformed into an instance of matroid parity as follows. Construct a paving matroid on elements, paired up so that there is one pair of elements per pair of vertices. Define a subset of these elements to be independent if it satisfies any one of the following three conditions:
Then there is a solution to the matroid parity problem for this matroid, of size , if and only if has a clique of size . Since finding cliques of a given size is NP-complete, it follows that determining whether this type of matrix parity problem has a solution of size is also NP-complete. [15]
This problem transformation does not depend on the structure of the clique problem in any deep way, and would work for any other problem of finding size- subsets of a larger set that satisfy a computable test. By applying it to a randomly-permuted graph that contains exactly one clique of size , and applying Yao's principle relating expected and average-case complexity, one can show that any deterministic or randomized algorithm for matroid parity that accesses its matroid only by independence tests needs to make an exponential number of tests. [4]
In graph theory, a perfect matching in a graph is a matching that covers every vertex of the graph. More formally, given a graph G = (V, E), a perfect matching in G is a subset M of edge set E, such that every vertex in the vertex set V is adjacent to exactly one edge in M.
In the mathematical field of graph theory, a bipartite graph is a graph whose vertices can be divided into two disjoint and independent sets and , that is, every edge connects a vertex in to one in . Vertex sets and are usually called the parts of the graph. Equivalently, a bipartite graph is a graph that does not contain any odd-length cycles.
In graph theory, a component of an undirected graph is a connected subgraph that is not part of any larger connected subgraph. The components of any graph partition its vertices into disjoint sets, and are the induced subgraphs of those sets. A graph that is itself connected has exactly one component, consisting of the whole graph. Components are sometimes called connected components.
This is a glossary of graph theory. Graph theory is the study of graphs, systems of nodes or vertices connected in pairs by lines or edges.
In the mathematical discipline of graph theory, a matching or independent edge set in an undirected graph is a set of edges without common vertices. In other words, a subset of the edges is a matching if each vertex appears in at most one edge of that matching. Finding a matching in a bipartite graph can be treated as a network flow problem.
In graph theory, a perfect graph is a graph in which the chromatic number equals the size of the maximum clique, both in the graph itself and in every induced subgraph. In all graphs, the chromatic number is greater than or equal to the size of the maximum clique, but they can be far apart. A graph is perfect when these numbers are equal, and remain equal after the deletion of arbitrary subsets of vertices.
In the mathematical theory of matroids, a graphic matroid is a matroid whose independent sets are the forests in a given finite undirected graph. The dual matroids of graphic matroids are called co-graphic matroids or bond matroids. A matroid that is both graphic and co-graphic is sometimes called a planar matroid ; these are exactly the graphic matroids formed from planar graphs.
In graph theory, a branch of mathematics, the circuit rank, cyclomatic number, cycle rank, or nullity of an undirected graph is the minimum number of edges that must be removed from the graph to break all its cycles, making it into a tree or forest. It is equal to the number of independent cycles in the graph. Unlike the corresponding feedback arc set problem for directed graphs, the circuit rank r is easily computed using the formula
In graph theory, a dominating set for a graph G is a subset D of its vertices, such that any vertex of G is in D, or has a neighbor in D. The domination numberγ(G) is the number of vertices in a smallest dominating set for G.
In graph theory, a maximal independent set (MIS) or maximal stable set is an independent set that is not a subset of any other independent set. In other words, there is no vertex outside the independent set that may join it because it is maximal with respect to the independent set property.
In graph theory and graph algorithms, a feedback arc set or feedback edge set in a directed graph is a subset of the edges of the graph that contains at least one edge out of every cycle in the graph. Removing these edges from the graph breaks all of the cycles, producing an acyclic subgraph of the given graph, often called a directed acyclic graph. A feedback arc set with the fewest possible edges is a minimum feedback arc set and its removal leaves a maximum acyclic subgraph; weighted versions of these optimization problems are also used. If a feedback arc set is minimal, meaning that removing any edge from it produces a subset that is not a feedback arc set, then it has an additional property: reversing all of its edges, rather than removing them, produces a directed acyclic graph.
The arboricity of an undirected graph is the minimum number of forests into which its edges can be partitioned. Equivalently it is the minimum number of spanning forests needed to cover all the edges of the graph. The Nash-Williams theorem provides necessary and sufficient conditions for when a graph is k-arboric.
In graph theory, a connected graph is k-edge-connected if it remains connected whenever fewer than k edges are removed.
In the mathematical area of graph theory, Kőnig's theorem, proved by Dénes Kőnig, describes an equivalence between the maximum matching problem and the minimum vertex cover problem in bipartite graphs. It was discovered independently, also in 1931, by Jenő Egerváry in the more general case of weighted graphs.
In graph theory, the hypercube graphQn is the graph formed from the vertices and edges of an n-dimensional hypercube. For instance, the cube graph Q3 is the graph formed by the 8 vertices and 12 edges of a three-dimensional cube. Qn has 2n vertices, 2n – 1n edges, and is a regular graph with n edges touching each vertex.
In graph theory, a cactus is a connected graph in which any two simple cycles have at most one vertex in common. Equivalently, it is a connected graph in which every edge belongs to at most one simple cycle, or in which every block is an edge or a cycle.
In graph theory, an area of mathematics, a claw-free graph is a graph that does not have a claw as an induced subgraph.
In graph theory, a pseudoforest is an undirected graph in which every connected component has at most one cycle. That is, it is a system of vertices and edges connecting pairs of vertices, such that no two cycles of consecutive edges share any vertex with each other, nor can any two cycles be connected to each other by a path of consecutive edges. A pseudotree is a connected pseudoforest.
In the mathematics of structural rigidity, a rigidity matroid is a matroid that describes the number of degrees of freedom of an undirected graph with rigid edges of fixed lengths, embedded into Euclidean space. In a rigidity matroid for a graph with n vertices in d-dimensional space, a set of edges that defines a subgraph with k degrees of freedom has matroid rank dn − k. A set of edges is independent if and only if, for every edge in the set, removing the edge would increase the number of degrees of freedom of the remaining subgraph.
In combinatorial mathematics and extremal graph theory, the Ruzsa–Szemerédi problem or (6,3)-problem asks for the maximum number of edges in a graph in which every edge belongs to a unique triangle. Equivalently it asks for the maximum number of edges in a balanced bipartite graph whose edges can be partitioned into a linear number of induced matchings, or the maximum number of triples one can choose from points so that every six points contain at most two triples. The problem is named after Imre Z. Ruzsa and Endre Szemerédi, who first proved that its answer is smaller than by a slowly-growing factor.