This article needs additional citations for verification .(February 2011) |
In mathematics, a polymatroid is a polytope associated with a submodular function. The notion was introduced by Jack Edmonds in 1970. [1] It is also described as the multiset analogue of the matroid.
Let be a finite set and a non-decreasing submodular function, that is, for each we have , and for each we have . We define the polymatroid associated to to be the following polytope:
.
When we allow the entries of to be negative we denote this polytope by , and call it the extended polymatroid associated to . [2]
Let be a finite set. If then we denote by the sum of the entries of , and write whenever for every (notice that this gives an order to ). A polymatroid on the ground set is a nonempty compact subset in , the set of independent vectors, such that:
This definition is equivalent to the one described before, [3] where is the function defined by for every .
To every matroid on the ground set we can associate the set , where is the set of independent sets of and we denote by the characteristic vector of : for every
By taking the convex hull of we get a polymatroid. It is associated to the rank function of . The conditions of the second definition reflect the axioms for the independent sets of a matroid.
Because generalized permutahedra can be constructed from submodular functions, and every generalized permutahedron has an associated submodular function, we have that there should be a correspondence between generalized permutahedra and polymatroids. In fact every polymatroid is a generalized permutahedron that has been translated to have a vertex in the origin. This result suggests that the combinatorial information of polymatroids is shared with generalized permutahedra.
is nonempty if and only if and that is nonempty if and only if .
Given any extended polymatroid there is a unique submodular function such that and .
For a supermodular f one analogously may define the contrapolymatroid
This analogously generalizes the dominant of the spanning set polytope of matroids.
When we only focus on the lattice points of our polymatroids we get what is called, discrete polymatroids. Formally speaking, the definition of a discrete polymatroid goes exactly as the one for polymatroids except for where the vectors will live in, instead of they will live in . This combinatorial object is of great interest because of their relationship to monomial ideals.
In mathematics, a directed set is a nonempty set together with a reflexive and transitive binary relation , with the additional property that every pair of elements has an upper bound. In other words, for any and in there must exist in with and A directed set's preorder is called a direction.
The Hahn–Banach theorem is a central tool in functional analysis. It allows the extension of bounded linear functionals defined on a vector subspace of some vector space to the whole space, and it also shows that there are "enough" continuous linear functionals defined on every normed vector space to make the study of the dual space "interesting". Another version of the Hahn–Banach theorem is known as the Hahn–Banach separation theorem or the hyperplane separation theorem, and has numerous uses in convex geometry.
Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative.
In the mathematical discipline of set theory, forcing is a technique for proving consistency and independence results. Intuitively, forcing can be thought of as a technique to expand the set theoretical universe to a larger universe by introducing a new "generic" object .
In linear algebra, a multilinear map is a function of several variables that is linear separately in each variable. More precisely, a multilinear map is a function
In combinatorics, a branch of mathematics, a matroid is a structure that abstracts and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid axiomatically, the most significant being in terms of: independent sets; bases or circuits; rank functions; closure operators; and closed sets or flats. In the language of partially ordered sets, a finite simple matroid is equivalent to a geometric lattice.
In mathematics, Fatou's lemma establishes an inequality relating the Lebesgue integral of the limit inferior of a sequence of functions to the limit inferior of integrals of these functions. The lemma is named after Pierre Fatou.
In mathematics, there are several equivalent ways of defining the real numbers. One of them is that they form a complete ordered field that does not contain any smaller complete ordered field. Such a definition does not prove that such a complete ordered field exists, and the existence proof consists of constructing a mathematical structure that satisfies the definition.
In game theory, a cooperative game is a game with groups of players who form binding “coalitions” with external enforcement of cooperative behavior. This is different from non-cooperative games in which there is either no possibility to forge alliances or all agreements need to be self-enforcing.
In combinatorics, a greedoid is a type of set system. It arises from the notion of the matroid, which was originally introduced by Whitney in 1935 to study planar graphs and was later used by Edmonds to characterize a class of optimization problems that can be solved by greedy algorithms. Around 1980, Korte and Lovász introduced the greedoid to further generalize this characterization of greedy algorithms; hence the name greedoid. Besides mathematical optimization, greedoids have also been connected to graph theory, language theory, order theory, and other areas of mathematics.
In mathematics, the restriction of a function is a new function, denoted or obtained by choosing a smaller domain for the original function The function is then said to extend
In linear algebra and related areas of mathematics a balanced set, circled set or disk in a vector space is a set such that for all scalars satisfying
In geometry, the hyperplane separation theorem is a theorem about disjoint convex sets in n-dimensional Euclidean space. There are several rather similar versions. In one version of the theorem, if both these sets are closed and at least one of them is compact, then there is a hyperplane in between them and even two parallel hyperplanes in between them separated by a gap. In another version, if both disjoint convex sets are open, then there is a hyperplane in between them, but not necessarily any gap. An axis which is orthogonal to a separating hyperplane is a separating axis, because the orthogonal projections of the convex bodies onto the axis are disjoint.
In mathematics, an ordered vector space or partially ordered vector space is a vector space equipped with a partial order that is compatible with the vector space operations.
In mathematics, a cardinal function is a function that returns cardinal numbers.
An oriented matroid is a mathematical structure that abstracts the properties of directed graphs, vector arrangements over ordered fields, and hyperplane arrangements over ordered fields. In comparison, an ordinary matroid abstracts the dependence properties that are common both to graphs, which are not necessarily directed, and to arrangements of vectors over fields, which are not necessarily ordered.
In mathematics and optimization, a pseudo-Boolean function is a function of the form
In mathematics, a submodular set function is a set function that, informally, describes the relationship between a set of inputs and an output, where adding more of one input has a decreasing additional benefit. The natural diminishing returns property which makes them suitable for many applications, including approximation algorithms, game theory and electrical networks. Recently, submodular functions have also found utility in several real world problems in machine learning and artificial intelligence, including automatic summarization, multi-document summarization, feature selection, active learning, sensor placement, image collection summarization and many other domains.
In mathematics, a subadditive set function is a set function whose value, informally, has the property that the value of function on the union of two sets is at most the sum of values of the function on each of the sets. This is thematically related to the subadditivity property of real-valued functions.
In mathematics, a matroid polytope, also called a matroid basis polytope to distinguish it from other polytopes derived from a matroid, is a polytope constructed via the bases of a matroid. Given a matroid , the matroid polytope is the convex hull of the indicator vectors of the bases of .