Polymatroid

Last updated

In mathematics, a polymatroid is a polytope associated with a submodular function. The notion was introduced by Jack Edmonds in 1970. [1] It is also described as the multiset analogue of the matroid.

Contents

Definition

Let be a finite set and a non-decreasing submodular function, that is, for each we have , and for each we have . We define the polymatroid associated to to be the following polytope:

.

When we allow the entries of to be negative we denote this polytope by , and call it the extended polymatroid associated to . [2]

An equivalent definition

Let be a finite set and . We call the modulus of to be the sum of all of its entries, denoted , and denote whenever for every (notice that this gives an order to ). A polymatroid on the ground set is a nonempty compact subset in , the set of independent vectors, such that:

  1. We have that if , then for every :
  2. If with , then there is a vector such that .

This definition is equivalent to the one described before, [3] where is the function defined by for every .

Relation to matroids

To every matroid on the ground set we can associate the set , where for every we have that

By taking the convex hull of we get a polymatroid, in the sense of the second definition, associated to the rank function of .

Relation to generalized permutahedra

Because generalized permutahedra can be constructed from submodular functions, and every generalized permutahedron has an associated submodular function, we have that there should be a correspondence between generalized permutahedra and polymatroids. In fact every polymatroid is a generalized permutahedron that has been translated to have a vertex in the origin. This result suggests that the combinatorial information of polymatroids is shared with generalized permutahedra.

Properties

is nonempty if and only if and that is nonempty if and only if .

Given any extended polymatroid there is a unique submodular function such that and .

Contrapolymatroids

For a supermodular f one analogously may define the contrapolymatroid

This analogously generalizes the dominant of the spanning set polytope of matroids.

Discrete polymatroids

When we only focus on the lattice points of our polymatroids we get what is called, discrete polymatroids. Formally speaking, the definition of a discrete polymatroid goes exactly as the one for polymatroids except for where the vectors will live in, instead of they will live in . This combinatorial object is of great interest because of their relationship to monomial ideals.

Related Research Articles

In mathematics, a directed set is a nonempty set together with a reflexive and transitive binary relation , with the additional property that every pair of elements has an upper bound. In other words, for any and in there must exist in with and A directed set's preorder is called a direction.

In mathematics, the infimum of a subset of a partially ordered set is a greatest element in that is less than or equal to all elements of if such an element exists. Consequently, the term greatest lower bound is also commonly used.

Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative. Distributions are widely used in the theory of partial differential equations, where it may be easier to establish the existence of distributional solutions than classical solutions, or appropriate classical solutions may not exist. Distributions are also important in physics and engineering where many problems naturally lead to differential equations whose solutions or initial conditions are distributions, such as the Dirac delta function.

In the mathematical discipline of set theory, forcing is a technique for proving consistency and independence results. It was first used by Paul Cohen in 1963, to prove the independence of the axiom of choice and the continuum hypothesis from Zermelo–Fraenkel set theory.

In combinatorics, a branch of mathematics, a matroid is a structure that abstracts and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid axiomatically, the most significant being in terms of: independent sets; bases or circuits; rank functions; closure operators; and closed sets or flats. In the language of partially ordered sets, a finite matroid is equivalent to a geometric lattice.

In mathematics, there are several ways of defining the real number system as an ordered field. The synthetic approach gives a list of axioms for the real numbers as a complete ordered field. Under the usual axioms of set theory, one can show that these axioms are categorical, in the sense that there is a model for the axioms, and any two such models are isomorphic. Any one of these models must be explicitly constructed, and most of these models are built using the basic properties of the rational number system as an ordered field.

In mathematics, a duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one fashion, often by means of an involution operation: if the dual of A is B, then the dual of B is A. Such involutions sometimes have fixed points, so that the dual of A is A itself. For example, Desargues' theorem is self-dual in this sense under the standard duality in projective geometry.

In game theory, a cooperative game is a game with competition between groups of players ("coalitions") due to the possibility of external enforcement of cooperative behavior. Those are opposed to non-cooperative games in which there is either no possibility to forge alliances or all agreements need to be self-enforcing.

In combinatorics, a greedoid is a type of set system. It arises from the notion of the matroid, which was originally introduced by Whitney in 1935 to study planar graphs and was later used by Edmonds to characterize a class of optimization problems that can be solved by greedy algorithms. Around 1980, Korte and Lovász introduced the greedoid to further generalize this characterization of greedy algorithms; hence the name greedoid. Besides mathematical optimization, greedoids have also been connected to graph theory, language theory, order theory, and other areas of mathematics.

In measure theory, an area of mathematics, Egorov's theorem establishes a condition for the uniform convergence of a pointwise convergent sequence of measurable functions. It is also named Severini–Egoroff theorem or Severini–Egorov theorem, after Carlo Severini, an Italian mathematician, and Dmitri Egorov, a Russian physicist and geometer, who published independent proofs respectively in 1910 and 1911.

In additive combinatorics, Freiman's theorem is a central result which indicates the approximate structure of sets whose sumset is small. It roughly states that if is small, then can be contained in a small generalized arithmetic progression.

The Knaster–Kuratowski–Mazurkiewicz lemma is a basic result in mathematical fixed-point theory published in 1929 by Knaster, Kuratowski and Mazurkiewicz.

The dominance-based rough set approach (DRSA) is an extension of rough set theory for multi-criteria decision analysis (MCDA), introduced by Greco, Matarazzo and Słowiński. The main change compared to the classical rough sets is the substitution for the indiscernibility relation by a dominance relation, which permits one to deal with inconsistencies typical to consideration of criteria and preference-ordered decision classes.

Oriented matroid

An oriented matroid is a mathematical structure that abstracts the properties of directed graphs, vector arrangements over ordered fields, and hyperplane arrangements over ordered fields. In comparison, an ordinary matroid abstracts the dependence properties that are common both to graphs, which are not necessarily directed, and to arrangements of vectors over fields, which are not necessarily ordered.

In discrete mathematics, ideal lattices are a special class of lattices and a generalization of cyclic lattices. Ideal lattices naturally occur in many parts of number theory, but also in other areas. In particular, they have a significant place in cryptography. Micciancio defined a generalization of cyclic lattices as ideal lattices. They can be used in cryptosystems to decrease by a square root the number of parameters necessary to describe a lattice, making them more efficient. Ideal lattices are a new concept, but similar lattice classes have been used for a long time. For example, cyclic lattices, a special case of ideal lattices, are used in NTRUEncrypt and NTRUSign.

In mathematics and optimization, a pseudo-Boolean function is a function of the form

In mathematics, a submodular set function is a set function whose value, informally, has the property that the difference in the incremental value of the function that a single element makes when added to an input set decreases as the size of the input set increases. Submodular functions have a natural diminishing returns property which makes them suitable for many applications, including approximation algorithms, game theory and electrical networks. Recently, submodular functions have also found immense utility in several real world problems in machine learning and artificial intelligence, including automatic summarization, multi-document summarization, feature selection, active learning, sensor placement, image collection summarization and many other domains.

In the mathematical theory of matroids, the rank of a matroid is the maximum size of an independent set in the matroid. The rank of a subset S of elements of the matroid is, similarly, the maximum size of an independent subset of S, and the rank function of the matroid maps sets of elements to their ranks.

In mathematics, a subadditive set function is a set function whose value, informally, has the property that the value of function on the union of two sets is at most the sum of values of the function on each of the sets. This is thematically related to the subadditivity property of real-valued functions.

In mathematics, a matroid polytope, also called a matroid basis polytope to distinguish it from other polytopes derived from a matroid, is a polytope constructed via the bases of a matroid. Given a matroid , the matroid polytope is the convex hull of the indicator vectors of the bases of .

References

Footnotes
  1. Edmonds, Jack. Submodular functions, matroids, and certain polyhedra. 1970. Combinatorial Structures and their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969) pp. 69–87 Gordon and Breach, New York. MR 0270945
  2. Schrijver, Alexander (2003), Combinatorial Optimization, Springer, §44, p. 767, ISBN   3-540-44389-4
  3. J.Herzog, T.Hibi. Monomial Ideals. 2011. Graduate Texts in Mathematics 260, pp. 237–263 Springer-Verlag, London.


Additional reading