Matching pennies

Last updated
HeadsTails
Heads+1, −1−1, +1
Tails−1, +1+1, −1
Matching pennies

Matching pennies is a non-cooperative game studied in game theory. It is played between two players, Even and Odd. Each player has a penny and must secretly turn the penny to heads or tails. The players then reveal their choices simultaneously. If the pennies match (both heads or both tails), then Even wins and keeps both pennies. If the pennies do not match (one heads and one tails), then Odd wins and keeps both pennies.

Contents

Theory

Matching Pennies is a zero-sum game because each participant's gain or loss of utility is exactly balanced by the losses or gains of the utility of the other participants. If the participants' total gains are added up and their total losses subtracted, the sum will be zero.

The game can be written in a payoff matrix (pictured right - from Even's point of view). Each cell of the matrix shows the two players' payoffs, with Even's payoffs listed first.

Matching pennies is used primarily to illustrate the concept of mixed strategies and a mixed strategy Nash equilibrium. [1]

This game has no pure strategy Nash equilibrium since there is no pure strategy (heads or tails) that is a best response to a best response. In other words, there is no pair of pure strategies such that neither player would want to switch if told what the other would do. Instead, the unique Nash equilibrium of this game is in mixed strategies: each player chooses heads or tails with equal probability. [2] In this way, each player makes the other indifferent between choosing heads or tails, so neither player has an incentive to try another strategy. The best-response functions for mixed strategies are depicted in Figure 1 below:

Figure 1. Best response correspondences for players in the matching pennies game. The leftmost mapping is for the Even player, the middle shows the mapping for the Odd player. The sole Nash equilibrium is shown in the right hand graph. x is a probability of playing heads by Odd player, y is a probability of playing heads by Even. The unique intersection is the only point where the strategy of Even is the best response to the strategy of Odd and vice versa. Reaction-correspondence-matching-pennies.jpg
Figure 1. Best response correspondences for players in the matching pennies game. The leftmost mapping is for the Even player, the middle shows the mapping for the Odd player. The sole Nash equilibrium is shown in the right hand graph. x is a probability of playing heads by Odd player, y is a probability of playing heads by Even. The unique intersection is the only point where the strategy of Even is the best response to the strategy of Odd and vice versa.

When either player plays the equilibrium, everyone's expected payoff is zero.

Variants

HeadsTails
Heads+7, -1-1, +1
Tails-1, +1+1, -1
Matching pennies

Varying the payoffs in the matrix can change the equilibrium point. For example, in the table shown on the right, Even has a chance to win 7 if both he and Odd play Heads. To calculate the equilibrium point in this game, note that a player playing a mixed strategy must be indifferent between his two actions (otherwise he would switch to a pure strategy). This gives us two equations:

Note that since is the Heads-probability of Odd and is the Heads-probability of Even, the change in Even's payoff affects Odd's equilibrium strategy and not Even's own equilibrium strategy. This may be unintuitive at first. The reasoning is that in equilibrium, the choices must be equally appealing. The +7 possibility for Even is very appealing relative to +1, so to maintain equilibrium, Odd's play must lower the probability of that outcome to compensate and equalize the expected values of the two choices, meaning in equilibrium Odd will play Heads less often and Tails more often.

Laboratory experiments

Human players do not always play the equilibrium strategy. Laboratory experiments reveal several factors that make players deviate from the equilibrium strategy, especially if matching pennies is played repeatedly:

Moreover, when the payoff matrix is asymmetric, other factors influence human behavior even when the game is not repeated:

Real-life data

The conclusions of laboratory experiments have been criticized on several grounds. [9] [10]

To overcome these difficulties, several authors have done statistical analyses of professional sports games. These are zero-sum games with very high payoffs, and the players have devoted their lives to become experts. Often such games are strategically similar to matching pennies:

See also

Related Research Articles

The prisoner's dilemma is a game theory thought experiment that involves two rational agents, each of whom can cooperate for mutual benefit or betray their partner ("defect") for individual reward. This dilemma was originally framed by Merrill Flood and Melvin Dresher in 1950 while they worked at the RAND Corporation. Albert W. Tucker later formalized the game by structuring the rewards in terms of prison sentences and named it the "prisoner's dilemma".

In game theory, the Nash equilibrium, named after the mathematician John Nash, is the most common way to define the solution of a non-cooperative game involving two or more players. In a Nash equilibrium, each player is assumed to know the equilibrium strategies of the other players, and no one has anything to gain by changing only one's own strategy. The principle of Nash equilibrium dates back to the time of Cournot, who in 1838 applied it to competing firms choosing outputs.

In game theory, the best response is the strategy which produces the most favorable outcome for a player, taking other players' strategies as given. The concept of a best response is central to John Nash's best-known contribution, the Nash equilibrium, the point at which each player in a game has selected the best response to the other players' strategies.

In game theory, the centipede game, first introduced by Robert Rosenthal in 1981, is an extensive form game in which two players take turns choosing either to take a slightly larger share of an increasing pot, or to pass the pot to the other player. The payoffs are arranged so that if one passes the pot to one's opponent and the opponent takes the pot on the next round, one receives slightly less than if one had taken the pot on this round, but after an additional switch the potential payoff will be higher. Therefore, although at each round a player has an incentive to take the pot, it would be better for them to wait. Although the traditional centipede game had a limit of 100 rounds, any game with this structure but a different number of rounds is called a centipede game.

In game theory, a player's strategy is any of the options which they choose in a setting where the optimal outcome depends not only on their own actions but on the actions of others. The discipline mainly concerns the action of a player in a game affecting the behavior or actions of other players. Some examples of "games" include chess, bridge, poker, monopoly, diplomacy or battleship. A player's strategy will determine the action which the player will take at any stage of the game. In studying game theory, economists enlist a more rational lens in analyzing decisions rather than the psychological or sociological perspectives taken when analyzing relationships between decisions of two or more parties in different disciplines.

In game theory, a Perfect Bayesian Equilibrium (PBE) is a solution with Bayesian probability to a turn-based game with incomplete information. More specifically, it is an equilibrium concept that uses Bayesian updating to describe player behavior in dynamic games with incomplete information. Perfect Bayesian equilibria are used to solve the outcome of games where players take turns but are unsure of the "type" of their opponent, which occurs when players don't know their opponent's preference between individual moves. A classic example of a dynamic game with types is a war game where the player is unsure whether their opponent is a risk-taking "hawk" type or a pacifistic "dove" type. Perfect Bayesian Equilibria are a refinement of Bayesian Nash equilibrium (BNE), which is a solution concept with Bayesian probability for non-turn-based games.

In game theory, a Bayesian game is a strategic decision-making model which assumes players have incomplete information. Players hold private information relevant to the game, meaning that the payoffs are not common knowledge. Bayesian games model the outcome of player interactions using aspects of Bayesian probability. They are notable because they allowed, for the first time in game theory, for the specification of the solutions to games with incomplete information.

Rationalizability is a solution concept in game theory. The general idea is to provide the weakest constraints on players while still requiring that players are rational and this rationality is common knowledge among the players. It is more permissive than Nash equilibrium. Both require that players respond optimally to some belief about their opponents' actions, but Nash equilibrium requires that these beliefs be correct while rationalizability does not. Rationalizability was first defined, independently, by Bernheim (1984) and Pearce (1984).

In game theory, folk theorems are a class of theorems describing an abundance of Nash equilibrium payoff profiles in repeated games. The original Folk Theorem concerned the payoffs of all the Nash equilibria of an infinitely repeated game. This result was called the Folk Theorem because it was widely known among game theorists in the 1950s, even though no one had published it. Friedman's (1971) Theorem concerns the payoffs of certain subgame-perfect Nash equilibria (SPE) of an infinitely repeated game, and so strengthens the original Folk Theorem by using a stronger equilibrium concept: subgame-perfect Nash equilibria rather than Nash equilibria.

In game theory, a correlated equilibrium is a solution concept that is more general than the well known Nash equilibrium. It was first discussed by mathematician Robert Aumann in 1974. The idea is that each player chooses their action according to their private observation of the value of the same public signal. A strategy assigns an action to every possible observation a player can make. If no player would want to deviate from their strategy, the distribution from which the signals are drawn is called a correlated equilibrium.

In game theory, the purification theorem was contributed by Nobel laureate John Harsanyi in 1973. The theorem aims to justify a puzzling aspect of mixed strategy Nash equilibria: that each player is wholly indifferent amongst each of the actions he puts non-zero weight on, yet he mixes them so as to make every other player also indifferent.

Quantal response equilibrium (QRE) is a solution concept in game theory. First introduced by Richard McKelvey and Thomas Palfrey, it provides an equilibrium notion with bounded rationality. QRE is not an equilibrium refinement, and it can give significantly different results from Nash equilibrium. QRE is only defined for games with discrete strategies, although there are continuous-strategy analogues.

Risk dominance and payoff dominance are two related refinements of the Nash equilibrium (NE) solution concept in game theory, defined by John Harsanyi and Reinhard Selten. A Nash equilibrium is considered payoff dominant if it is Pareto superior to all other Nash equilibria in the game. When faced with a choice among equilibria, all players would agree on the payoff dominant equilibrium since it offers to each player at least as much payoff as the other Nash equilibria. Conversely, a Nash equilibrium is considered risk dominant if it has the largest basin of attraction. This implies that the more uncertainty players have about the actions of the other player(s), the more likely they will choose the strategy corresponding to it.

Proper equilibrium is a refinement of Nash Equilibrium by Roger B. Myerson. Proper equilibrium further refines Reinhard Selten's notion of a trembling hand perfect equilibrium by assuming that more costly trembles are made with significantly smaller probability than less costly ones.

In game theory, an epsilon-equilibrium, or near-Nash equilibrium, is a strategy profile that approximately satisfies the condition of Nash equilibrium. In a Nash equilibrium, no player has an incentive to change his behavior. In an approximate Nash equilibrium, this requirement is weakened to allow the possibility that a player may have a small incentive to do something different. This may still be considered an adequate solution concept, assuming for example status quo bias. This solution concept may be preferred to Nash equilibrium due to being easier to compute, or alternatively due to the possibility that in games of more than 2 players, the probabilities involved in an exact Nash equilibrium need not be rational numbers.

In game theory, the traveler's dilemma is a non-zero-sum game in which each player proposes a payoff. The lower of the two proposals wins; the lowball player receives the lowball payoff plus a small bonus, and the highball player receives the same lowball payoff, minus a small penalty. Surprisingly, the Nash equilibrium is for both players to aggressively lowball. The traveler's dilemma is notable in that naive play appears to outperform the Nash equilibrium; this apparent paradox also appears in the centipede game and the finitely-iterated prisoner's dilemma.

Quantum pseudo-telepathy is the fact that in certain Bayesian games with asymmetric information, players who have access to a shared physical system in an entangled quantum state, and who are able to execute strategies that are contingent upon measurements performed on the entangled physical system, are able to achieve higher expected payoffs in equilibrium than can be achieved in any mixed-strategy Nash equilibrium of the same game by players without access to the entangled quantum system.

In game theory a Poisson game is a game with a random number of players, where the distribution of the number of players follows a Poisson random process. An extension of games of imperfect information, Poisson games have mostly seen application to models of voting.

Congestion games (CG) are a class of games in game theory. They represent situations which commonly occur in roads, communication networks, oligopoly markets and natural habitats. There is a set of resources ; there are several players who need resources ; each player chooses a subset of these resources ; the delay in each resource is determined by the number of players choosing a subset that contains this resource. The cost of each player is the sum of delays among all resources he chooses. Naturally, each player wants to minimize his own delay; however, each player's choices impose a negative externality on the other players, which may lead to inefficient outcomes.

M equilibrium is a set valued solution concept in game theory that relaxes the rational choice assumptions of perfect maximization and perfect beliefs. The concept can be applied to any normal-form game with finite and discrete strategies. M equilibrium was first introduced by Jacob K. Goeree and Philippos Louis.

References

  1. Gibbons, Robert (1992). Game Theory for Applied Economists. Princeton University Press. pp. 29–33. ISBN   978-0-691-00395-5.
  2. "Matching Pennies". GameTheory.net. Archived from the original on 2006-10-01.
  3. Mookherjee, Dilip; Sopher, Barry (1994). "Learning Behavior in an Experimental Matching Pennies Game". Games and Economic Behavior. 7: 62–91. doi:10.1006/game.1994.1037.
  4. Eliaz, Kfir; Rubinstein, Ariel (2011). "Edgar Allan Poe's riddle: Framing effects in repeated matching pennies games". Games and Economic Behavior. 71: 88–99. doi:10.1016/j.geb.2009.05.010.
  5. Ochs, Jack (1995). "Games with Unique, Mixed Strategy Equilibria: An Experimental Study". Games and Economic Behavior. 10: 202–217. doi:10.1006/game.1995.1030.
  6. McKelvey, Richard; Palfrey, Thomas (1995). "Quantal Response Equilibria for Normal Form Games". Games and Economic Behavior. 10: 6–38. CiteSeerX   10.1.1.30.5152 . doi:10.1006/game.1995.1023.
  7. Goeree, Jacob K.; Holt, Charles A.; Palfrey, Thomas R. (2003). "Risk averse behavior in generalized matching pennies games" (PDF). Games and Economic Behavior. 45: 97–113. doi:10.1016/s0899-8256(03)00052-6.
  8. Wooders, John; Shachat, Jason M. (2001). "On the Irrelevance of Risk Attitudes in Repeated Two-Outcome Games". Games and Economic Behavior. 34 (2): 342. doi:10.1006/game.2000.0808. S2CID   2401322.
  9. 1 2 Chiappori, P.; Levitt, S.; Groseclose, T. (2002). "Testing Mixed-Strategy Equilibria When Players Are Heterogeneous: The Case of Penalty Kicks in Soccer" (PDF). American Economic Review . 92 (4): 1138–1151. CiteSeerX   10.1.1.178.1646 . doi:10.1257/00028280260344678. JSTOR   3083302.
  10. 1 2 Palacios-Huerta, I. (2003). "Professionals Play Minimax". Review of Economic Studies . 70 (2): 395–415. CiteSeerX   10.1.1.127.9097 . doi:10.1111/1467-937X.00249.
  11. There is also the option of kicking/standing in the middle, but it is less often used.
  12. Walker, Mark; Wooders, John (2001). "Minimax Play at Wimbledon". The American Economic Review. 91 (5): 1521–1538. CiteSeerX   10.1.1.614.5372 . doi:10.1257/aer.91.5.1521. JSTOR   2677937.